-
Question 1
Correct
-
A 45 year old female patient has been brought to the emergency department with multiple injuries following a fall while hiking in the mountains. You observe significant injuries to the face. There is also bruising to the chest wall and a fracture dislocation to the ankle. The patient has undergone rapid sequence induction with Propofol and Suxamethonium. A chest X-ray shows multiple rib fractures but no pneumothorax or visible pulmonary contusion. You notice that the patient's end tidal CO2 has steadily increased since being intubated from 4.5 KPa to 7.4 KPa. You observe esophageal temperature is 39.3ºC. What is the likely cause of these readings?
Your Answer: Malignant hyperthermia
Explanation:The earliest and most frequent clinical indication of malignant hyperthermia is typically an increase in end tidal CO2. An unexplained elevation in end tidal CO2 is often the initial and most reliable sign of this condition.
Further Reading:
Malignant hyperthermia is a rare and life-threatening syndrome that can be triggered by certain medications in individuals who are genetically susceptible. The most common triggers are suxamethonium and inhalational anaesthetic agents. The syndrome is caused by the release of stored calcium ions from skeletal muscle cells, leading to uncontrolled muscle contraction and excessive heat production. This results in symptoms such as high fever, sweating, flushed skin, rapid heartbeat, and muscle rigidity. It can also lead to complications such as acute kidney injury, rhabdomyolysis, and metabolic acidosis. Treatment involves discontinuing the trigger medication, administering dantrolene to inhibit calcium release and promote muscle relaxation, and managing any associated complications such as hyperkalemia and acidosis. Referral to a malignant hyperthermia center for further investigation is also recommended.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 2
Correct
-
You are part of the team managing a conscious patient in the emergency room. You decide to insert a nasopharyngeal airway adjunct. How should you determine the appropriate size of the nasopharyngeal airway?
Your Answer: Sized according to the distance between the nostril and the tragus of the ear
Explanation:Nasopharyngeal airway adjuncts (NPAs) are selected based on their length, which should match the distance between the nostril and the tragus of the ear.
Further Reading:
Techniques to keep the airway open:
1. Suction: Used to remove obstructing material such as blood, vomit, secretions, and food debris from the oral cavity.
2. Chin lift manoeuvres: Involves lifting the head off the floor and lifting the chin to extend the head in relation to the neck. Improves alignment of the pharyngeal, laryngeal, and oral axes.
3. Jaw thrust: Used in trauma patients with cervical spine injury concerns. Fingers are placed under the mandible and gently pushed upward.
Airway adjuncts:
1. Oropharyngeal airway (OPA): Prevents the tongue from occluding the airway. Sized according to the patient by measuring from the incisor teeth to the angle of the mandible. Inserted with the tip facing backwards and rotated 180 degrees once it touches the back of the palate or oropharynx.
2. Nasopharyngeal airway (NPA): Useful when it is difficult to open the mouth or in semi-conscious patients. Sized by length (distance between nostril and tragus of the ear) and diameter (roughly that of the patient’s little finger). Contraindicated in basal skull and midface fractures.
Laryngeal mask airway (LMA):
– Supraglottic airway device used as a first line or rescue airway.
– Easy to insert, sized according to patient’s bodyweight.
– Advantages: Easy insertion, effective ventilation, some protection from aspiration.
– Disadvantages: Risk of hypoventilation, greater gastric inflation than endotracheal tube (ETT), risk of aspiration and laryngospasm.Note: Proper training and assessment of the patient’s condition are essential for airway management.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 3
Correct
-
You are asked to help with a 68-year-old patient who initially arrived at the emergency department complaining of chest discomfort and was found to have a slow heart rate before experiencing a cardiac arrest. Which of the following statements about medications used during cardiac arrest and peri-arrest is accurate?
Your Answer: Atropine is an antagonist of muscarinic acetylcholine receptors
Explanation:Atropine acts as a blocker for muscarinic acetylcholine receptors, making it an antagonist. It is commonly administered during peri-arrest bradycardia. In adults, a dose of 500 mcg is given every 3-5 minutes, with a maximum total dose of 3mg. On the other hand, the initial intravenous dose of amiodarone is 300 mg. Amiodarone works by prolonging repolarization and decreasing myocardial excitability. Additionally, lidocaine functions by blocking sodium channels.
Further Reading:
In the management of respiratory and cardiac arrest, several drugs are commonly used to help restore normal function and improve outcomes. Adrenaline is a non-selective agonist of adrenergic receptors and is administered intravenously at a dose of 1 mg every 3-5 minutes. It works by causing vasoconstriction, increasing systemic vascular resistance (SVR), and improving cardiac output by increasing the force of heart contraction. Adrenaline also has bronchodilatory effects.
Amiodarone is another drug used in cardiac arrest situations. It blocks voltage-gated potassium channels, which prolongs repolarization and reduces myocardial excitability. The initial dose of amiodarone is 300 mg intravenously after 3 shocks, followed by a dose of 150 mg after 5 shocks.
Lidocaine is an alternative to amiodarone in cardiac arrest situations. It works by blocking sodium channels and decreasing heart rate. The recommended dose is 1 mg/kg by slow intravenous injection, with a repeat half of the initial dose after 5 minutes. The maximum total dose of lidocaine is 3 mg/kg.
Magnesium sulfate is used to reverse myocardial hyperexcitability associated with hypomagnesemia. It is administered intravenously at a dose of 2 g over 10-15 minutes. An additional dose may be given if necessary, but the maximum total dose should not exceed 3 g.
Atropine is an antagonist of muscarinic acetylcholine receptors and is used to counteract the slowing of heart rate caused by the parasympathetic nervous system. It is administered intravenously at a dose of 500 mcg every 3-5 minutes, with a maximum dose of 3 mg.
Naloxone is a competitive antagonist for opioid receptors and is used in cases of respiratory arrest caused by opioid overdose. It has a short duration of action, so careful monitoring is necessary. The initial dose of naloxone is 400 micrograms, followed by 800 mcg after 1 minute. The dose can be gradually escalated up to 2 mg per dose if there is no response to the preceding dose.
It is important for healthcare professionals to have knowledge of the pharmacology and dosing schedules of these drugs in order to effectively manage respiratory and cardiac arrest situations.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 4
Correct
-
You are caring for a pediatric patient in the resuscitation bay. Your attending physician notices you selecting an oropharyngeal airway adjunct (OPA) and recommends using a laryngeal mask airway (LMA) instead. Which of the following statements about the advantages and disadvantages of using a laryngeal mask airway (LMA) is correct?
Your Answer: Greater risk of inducing laryngospasm using LMA compared to endotracheal intubation
Explanation:The use of a laryngeal mask airway (LMA) carries a higher risk of inducing laryngospasm compared to endotracheal intubation. However, LMAs are still considered excellent alternatives to bag masks as they reduce the risk of gastric inflation and aspiration. While they do decrease the risk of aspiration, they are not as protective as endotracheal tubes. Complications associated with LMA use include laryngospasm, nausea and vomiting, and a low risk of aspiration. LMAs have advantages over bag-mask ventilation, such as more effective ventilation, less gastric inflation, and a lower risk of aspiration. However, they also have disadvantages, including the risk of hypoventilation due to air leak around the cuff, greater gastric inflation compared to endotracheal intubation, and a very low risk of aspiration.
Further Reading:
Techniques to keep the airway open:
1. Suction: Used to remove obstructing material such as blood, vomit, secretions, and food debris from the oral cavity.
2. Chin lift manoeuvres: Involves lifting the head off the floor and lifting the chin to extend the head in relation to the neck. Improves alignment of the pharyngeal, laryngeal, and oral axes.
3. Jaw thrust: Used in trauma patients with cervical spine injury concerns. Fingers are placed under the mandible and gently pushed upward.
Airway adjuncts:
1. Oropharyngeal airway (OPA): Prevents the tongue from occluding the airway. Sized according to the patient by measuring from the incisor teeth to the angle of the mandible. Inserted with the tip facing backwards and rotated 180 degrees once it touches the back of the palate or oropharynx.
2. Nasopharyngeal airway (NPA): Useful when it is difficult to open the mouth or in semi-conscious patients. Sized by length (distance between nostril and tragus of the ear) and diameter (roughly that of the patient’s little finger). Contraindicated in basal skull and midface fractures.
Laryngeal mask airway (LMA):
– Supraglottic airway device used as a first line or rescue airway.
– Easy to insert, sized according to patient’s bodyweight.
– Advantages: Easy insertion, effective ventilation, some protection from aspiration.
– Disadvantages: Risk of hypoventilation, greater gastric inflation than endotracheal tube (ETT), risk of aspiration and laryngospasm.Note: Proper training and assessment of the patient’s condition are essential for airway management.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 5
Correct
-
You examine the X-ray of a 55-year-old male who has fallen onto his extended right hand. The X-ray confirms a fracture of the distal radius with dorsal displacement. Your plan is to perform a reduction of the fracture using intravenous regional anesthesia (Bier's block). While conducting the procedure, you take note of the duration of cuff inflation. What is the maximum duration the cuff should remain inflated?
Your Answer: 45 minutes
Explanation:The minimum time for cuff inflation during Bier’s block is 20 minutes, while the maximum time is 45 minutes.
Further Reading:
Bier’s block is a regional intravenous anesthesia technique commonly used for minor surgical procedures of the forearm or for reducing distal radius fractures in the emergency department (ED). It is recommended by NICE as the preferred anesthesia block for adults requiring manipulation of distal forearm fractures in the ED.
Before performing the procedure, a pre-procedure checklist should be completed, including obtaining consent, recording the patient’s weight, ensuring the resuscitative equipment is available, and monitoring the patient’s vital signs throughout the procedure. The air cylinder should be checked if not using an electronic machine, and the cuff should be checked for leaks.
During the procedure, a double cuff tourniquet is placed on the upper arm, and the arm is elevated to exsanguinate the limb. The proximal cuff is inflated to a pressure 100 mmHg above the systolic blood pressure, up to a maximum of 300 mmHg. The time of inflation and pressure should be recorded, and the absence of the radial pulse should be confirmed. 0.5% plain prilocaine is then injected slowly, and the time of injection is recorded. The patient should be warned about the potential cold/hot sensation and mottled appearance of the arm. After injection, the cannula is removed and pressure is applied to the venipuncture site to prevent bleeding. After approximately 10 minutes, the patient should have anesthesia and should not feel pain during manipulation. If anesthesia is successful, the manipulation can be performed, and a plaster can be applied by a second staff member. A check x-ray should be obtained with the arm lowered onto a pillow. The tourniquet should be monitored at all times, and the cuff should be inflated for a minimum of 20 minutes and a maximum of 45 minutes. If rotation of the cuff is required, it should be done after the manipulation and plaster application. After the post-reduction x-ray is satisfactory, the cuff can be deflated while observing the patient and monitors. Limb circulation should be checked prior to discharge, and appropriate follow-up and analgesia should be arranged.
There are several contraindications to performing Bier’s block, including allergy to local anesthetic, hypertension over 200 mm Hg, infection in the limb, lymphedema, methemoglobinemia, morbid obesity, peripheral vascular disease, procedures needed in both arms, Raynaud’s phenomenon, scleroderma, severe hypertension and sickle cell disease.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 6
Correct
-
You are part of the team working on a child with severe burns. The child has a suspected inhalation injury and needs to be intubated before being transferred to the local burns unit. During direct laryngoscopy, which classification system is used to evaluate the glottic opening?
Your Answer: Cormack and Lehane classification
Explanation:The tracheal opening can be classified using the Cormack-Lehane grading system. This system categorizes the views obtained through direct laryngoscopy based on the structures that are visible. More information about this classification system can be found in the notes provided below.
Further Reading:
A difficult airway refers to a situation where factors have been identified that make airway management more challenging. These factors can include body habitus, head and neck anatomy, mouth characteristics, jaw abnormalities, and neck mobility. The LEMON criteria can be used to predict difficult intubation by assessing these factors. The criteria include looking externally at these factors, evaluating the 3-3-2 rule which assesses the space in the mouth and neck, assessing the Mallampati score which measures the distance between the tongue base and roof of the mouth, and considering any upper airway obstructions or reduced neck mobility.
Direct laryngoscopy is a method used to visualize the larynx and assess the size of the tracheal opening. The Cormack-Lehane grading system can be used to classify the tracheal opening, with higher grades indicating more difficult access. In cases of a failed airway, where intubation attempts are unsuccessful and oxygenation cannot be maintained, the immediate priority is to oxygenate the patient and prevent hypoxic brain injury. This can be done through various measures such as using a bag-valve-mask ventilation, high flow oxygen, suctioning, and optimizing head positioning.
If oxygenation cannot be maintained, it is important to call for help from senior medical professionals and obtain a difficult airway trolley if not already available. If basic airway management techniques do not improve oxygenation, further intubation attempts may be considered using different equipment or techniques. If oxygen saturations remain below 90%, a surgical airway such as a cricothyroidotomy may be necessary.
Post-intubation hypoxia can occur for various reasons, and the mnemonic DOPES can be used to identify and address potential problems. DOPES stands for displacement of the endotracheal tube, obstruction, pneumothorax, equipment failure, and stacked breaths. If intubation attempts fail, a maximum of three attempts should be made before moving to an alternative plan, such as using a laryngeal mask airway or considering a cricothyroidotomy.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 7
Incorrect
-
You assess a 16 year old with an open fracture dislocation of the ankle after a motorcycle accident. The patient has been given nitrous oxide during transportation in the ambulance. The orthopedic surgeon on call is currently in the emergency department and recommends that the injury be promptly treated in the operating room. Which of the following statements about nitrous oxide is correct?
Your Answer: Nitrous oxide slows the absorption of inhaled anaesthetic agents via the 2nd gas effect
Correct Answer: Nitrous oxide administration increases the fractional content of inhaled anaesthetic gases
Explanation:The administration of nitrous oxide increases the amount of inhaled anaesthetic gases in the body through a phenomenon called the ‘second gas effect’. Nitrous oxide is much more soluble than nitrogen, with a solubility that is 20 to 30 times higher. When nitrous oxide is given, it causes a decrease in the volume of air in the alveoli. Additionally, nitrous oxide can enhance the absorption of other inhaled anaesthetic agents through the second gas effect. However, it is important to note that nitrous oxide alone cannot be used as the sole maintenance agent in anaesthesia.
Further Reading:
Entonox® is a mixture of 50% nitrous oxide and 50% oxygen that can be used for self-administration to reduce anxiety. It can also be used alongside other anesthesia agents. However, its mechanism of action for anxiety reduction is not fully understood. The Entonox bottles are typically identified by blue and white color-coded collars, but a new standard will replace these with dark blue shoulders in the future. It is important to note that Entonox alone cannot be used as the sole maintenance agent in anesthesia.
One of the effects of nitrous oxide is the second-gas effect, where it speeds up the absorption of other inhaled anesthesia agents. Nitrous oxide enters the alveoli and diffuses into the blood, displacing nitrogen. This displacement causes the remaining alveolar gases to become more concentrated, increasing the fractional content of inhaled anesthesia gases and accelerating the uptake of volatile agents into the blood.
However, when nitrous oxide administration is stopped, it can cause diffusion hypoxia. Nitrous oxide exits the blood and diffuses back into the alveoli, while nitrogen diffuses in the opposite direction. Nitrous oxide enters the alveoli much faster than nitrogen leaves, resulting in the dilution of oxygen within the alveoli. This can lead to diffusion hypoxia, where the oxygen concentration in the alveoli is diluted, potentially causing oxygen deprivation in patients breathing air.
There are certain contraindications for using nitrous oxide, as it can expand in air-filled spaces. It should be avoided in conditions such as head injuries with intracranial air, pneumothorax, recent intraocular gas injection, and entrapped air following a recent underwater dive.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 8
Incorrect
-
A 68-year-old individual reports feeling unwell after having their dislocated shoulder reduced while under sedation. You decide to prescribe ondansetron. What is the mechanism of action of ondansetron?
Your Answer: D2 receptor agonist
Correct Answer: 5-HT3 receptor antagonist
Explanation:Ondansetron is a medication that works by blocking serotonin receptors in the body. It is commonly used as a first-line treatment for postoperative nausea and vomiting (PONV), which can occur after procedures done under sedation or anesthesia.
Further Reading:
postoperative nausea and vomiting (PONV) is a common occurrence following procedures performed under sedation or anesthesia. It can be highly distressing for patients. Several risk factors have been identified for PONV, including female gender, a history of PONV or motion sickness, non-smoking status, patient age, use of volatile anesthetics, longer duration of anesthesia, perioperative opioid use, use of nitrous oxide, and certain types of surgery such as abdominal and gynecological procedures.
To manage PONV, antiemetics are commonly used. These medications work by targeting different receptors in the body. Cyclizine and promethazine are histamine H1-receptor antagonists, which block the action of histamine and help reduce nausea and vomiting. Ondansetron is a serotonin 5-HT3 receptor antagonist, which blocks the action of serotonin and is effective in preventing and treating PONV. Prochlorperazine is a dopamine D2 receptor antagonist, which blocks the action of dopamine and helps alleviate symptoms of nausea and vomiting. Metoclopramide is also a dopamine D2 receptor antagonist and a 5-HT3 receptor antagonist, providing dual action against PONV. It is also a 5-HT4 receptor agonist, which helps improve gastric emptying and reduces the risk of PONV.
Assessment and management of PONV involves a comprehensive approach. Healthcare professionals need to assess the patient’s risk factors for PONV and take appropriate measures to prevent its occurrence. This may include selecting the appropriate anesthesia technique, using antiemetics prophylactically, and providing adequate pain control. In cases where PONV does occur, prompt treatment with antiemetics should be initiated to alleviate symptoms and provide relief to the patient. Close monitoring of the patient’s condition and response to treatment is essential to ensure effective management of PONV.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 9
Incorrect
-
You are part of the team managing a pediatric trauma patient in the resuscitation room. You are assisting the attending physician who is performing rapid sequence induction. The attending physician asks you to apply cricoid pressure. What is the recommended amount of pressure that should be applied to the cricoid?
Your Answer:
Correct Answer: 30-40 Newtons
Explanation:To prevent the aspiration of gastric contents, it is recommended to apply a force of 30-40 Newtons to the cricoid cartilage during cricoid pressure.
Further Reading:
Rapid sequence induction (RSI) is a method used to place an endotracheal tube (ETT) in the trachea while minimizing the risk of aspiration. It involves inducing loss of consciousness while applying cricoid pressure, followed by intubation without face mask ventilation. The steps of RSI can be remembered using the 7 P’s: preparation, pre-oxygenation, pre-treatment, paralysis and induction, protection and positioning, placement with proof, and post-intubation management.
Preparation involves preparing the patient, equipment, team, and anticipating any difficulties that may arise during the procedure. Pre-oxygenation is important to ensure the patient has an adequate oxygen reserve and prolongs the time before desaturation. This is typically done by breathing 100% oxygen for 3 minutes. Pre-treatment involves administering drugs to counter expected side effects of the procedure and anesthesia agents used.
Paralysis and induction involve administering a rapid-acting induction agent followed by a neuromuscular blocking agent. Commonly used induction agents include propofol, ketamine, thiopentone, and etomidate. The neuromuscular blocking agents can be depolarizing (such as suxamethonium) or non-depolarizing (such as rocuronium). Depolarizing agents bind to acetylcholine receptors and generate an action potential, while non-depolarizing agents act as competitive antagonists.
Protection and positioning involve applying cricoid pressure to prevent regurgitation of gastric contents and positioning the patient’s neck appropriately. Tube placement is confirmed by visualizing the tube passing between the vocal cords, auscultation of the chest and stomach, end-tidal CO2 measurement, and visualizing misting of the tube. Post-intubation management includes standard care such as monitoring ECG, SpO2, NIBP, capnography, and maintaining sedation and neuromuscular blockade.
Overall, RSI is a technique used to quickly and safely secure the airway in patients who may be at risk of aspiration. It involves a series of steps to ensure proper preparation, oxygenation, drug administration, and tube placement. Monitoring and post-intubation care are also important aspects of RSI.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 10
Incorrect
-
A 28-year-old with a past of opioid misuse is brought into the ER after being discovered in a collapsed state with decreased level of consciousness. You are worried about the patient's airway. Your consultant recommends using a nasopharyngeal airway adjunct instead of an oropharyngeal airway adjunct. Why is a nasopharyngeal airway preferred in this scenario?
Your Answer:
Correct Answer: Less likely to provoke the gag reflex
Explanation:When a patient is semi-conscious, it is less likely for the nasopharyngeal airway adjuncts (NPA’s) to trigger the gag reflex compared to oropharyngeal airways. Therefore, NPA’s are typically the preferred option in these cases.
Further Reading:
Techniques to keep the airway open:
1. Suction: Used to remove obstructing material such as blood, vomit, secretions, and food debris from the oral cavity.
2. Chin lift manoeuvres: Involves lifting the head off the floor and lifting the chin to extend the head in relation to the neck. Improves alignment of the pharyngeal, laryngeal, and oral axes.
3. Jaw thrust: Used in trauma patients with cervical spine injury concerns. Fingers are placed under the mandible and gently pushed upward.
Airway adjuncts:
1. Oropharyngeal airway (OPA): Prevents the tongue from occluding the airway. Sized according to the patient by measuring from the incisor teeth to the angle of the mandible. Inserted with the tip facing backwards and rotated 180 degrees once it touches the back of the palate or oropharynx.
2. Nasopharyngeal airway (NPA): Useful when it is difficult to open the mouth or in semi-conscious patients. Sized by length (distance between nostril and tragus of the ear) and diameter (roughly that of the patient’s little finger). Contraindicated in basal skull and midface fractures.
Laryngeal mask airway (LMA):
– Supraglottic airway device used as a first line or rescue airway.
– Easy to insert, sized according to patient’s bodyweight.
– Advantages: Easy insertion, effective ventilation, some protection from aspiration.
– Disadvantages: Risk of hypoventilation, greater gastric inflation than endotracheal tube (ETT), risk of aspiration and laryngospasm.Note: Proper training and assessment of the patient’s condition are essential for airway management.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 11
Incorrect
-
A 15 year old male is brought to the emergency department by his parents after he fell while climbing over a fence and sustained a deep cut to the arm where the metal spike pierced the skin. An X-ray reveals no bone damage. You opt to examine and cleanse the wound under sedation as the patient is extremely upset. You choose to sedate the patient with Ketamine. What is the main way in which Ketamine works?
Your Answer:
Correct Answer: NMDA receptor antagonist
Explanation:Ketamine primarily works by blocking NMDA receptors, although its complete mechanism of action is not yet fully comprehended. Ongoing research is exploring its impact on various other receptors.
Further Reading:
Procedural sedation is commonly used by emergency department (ED) doctors to minimize pain and discomfort during procedures that may be painful or distressing for patients. Effective procedural sedation requires the administration of analgesia, anxiolysis, sedation, and amnesia. This is typically achieved through the use of a combination of short-acting analgesics and sedatives.
There are different levels of sedation, ranging from minimal sedation (anxiolysis) to general anesthesia. It is important for clinicians to understand the level of sedation being used and to be able to manage any unintended deeper levels of sedation that may occur. Deeper levels of sedation are similar to general anesthesia and require the same level of care and monitoring.
Various drugs can be used for procedural sedation, including propofol, midazolam, ketamine, and fentanyl. Each of these drugs has its own mechanism of action and side effects. Propofol is commonly used for sedation, amnesia, and induction and maintenance of general anesthesia. Midazolam is a benzodiazepine that enhances the effect of GABA on the GABA A receptors. Ketamine is an NMDA receptor antagonist and is used for dissociative sedation. Fentanyl is a highly potent opioid used for analgesia and sedation.
The doses of these drugs for procedural sedation in the ED vary depending on the drug and the route of administration. It is important for clinicians to be familiar with the appropriate doses and onset and peak effect times for each drug.
Safe sedation requires certain requirements, including appropriate staffing levels, competencies of the sedating practitioner, location and facilities, and monitoring. The level of sedation being used determines the specific requirements for safe sedation.
After the procedure, patients should be monitored until they meet the criteria for safe discharge. This includes returning to their baseline level of consciousness, having vital signs within normal limits, and not experiencing compromised respiratory status. Pain and discomfort should also be addressed before discharge.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 12
Incorrect
-
A 72 year old male presents to the emergency department after a fall on his outstretched arm. X-ray results confirm a dislocated shoulder. Your consultant recommends reducing it under sedation. What are the four essential elements for successful procedural sedation?
Your Answer:
Correct Answer: Analgesia, anxiolysis, sedation and amnesia
Explanation:The four essential elements for effective procedural sedation are analgesia, anxiolysis, sedation, and amnesia. It is important to prioritize pain management before sedation, using appropriate analgesics based on the patient’s pain level. Non-pharmacological methods should be considered to reduce anxiety, such as creating a comfortable environment and involving supportive family members. The level of sedation required should be determined in advance, with most procedures in the emergency department requiring moderate to deep sedation. Lastly, providing a degree of amnesia will help minimize any unpleasant memories associated with the procedure.
Further Reading:
Procedural sedation is commonly used by emergency department (ED) doctors to minimize pain and discomfort during procedures that may be painful or distressing for patients. Effective procedural sedation requires the administration of analgesia, anxiolysis, sedation, and amnesia. This is typically achieved through the use of a combination of short-acting analgesics and sedatives.
There are different levels of sedation, ranging from minimal sedation (anxiolysis) to general anesthesia. It is important for clinicians to understand the level of sedation being used and to be able to manage any unintended deeper levels of sedation that may occur. Deeper levels of sedation are similar to general anesthesia and require the same level of care and monitoring.
Various drugs can be used for procedural sedation, including propofol, midazolam, ketamine, and fentanyl. Each of these drugs has its own mechanism of action and side effects. Propofol is commonly used for sedation, amnesia, and induction and maintenance of general anesthesia. Midazolam is a benzodiazepine that enhances the effect of GABA on the GABA A receptors. Ketamine is an NMDA receptor antagonist and is used for dissociative sedation. Fentanyl is a highly potent opioid used for analgesia and sedation.
The doses of these drugs for procedural sedation in the ED vary depending on the drug and the route of administration. It is important for clinicians to be familiar with the appropriate doses and onset and peak effect times for each drug.
Safe sedation requires certain requirements, including appropriate staffing levels, competencies of the sedating practitioner, location and facilities, and monitoring. The level of sedation being used determines the specific requirements for safe sedation.
After the procedure, patients should be monitored until they meet the criteria for safe discharge. This includes returning to their baseline level of consciousness, having vital signs within normal limits, and not experiencing compromised respiratory status. Pain and discomfort should also be addressed before discharge.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 13
Incorrect
-
A 35 year old male is brought to the emergency department with severe head and chest injuries. As his GCS continues to decline, it is determined that intubation is necessary. You begin preparing for rapid sequence induction (RSI). What is the appropriate dosage of sodium thiopentone for an adult undergoing RSI?
Your Answer:
Correct Answer: 3-5 mg/kg
Explanation:To perform rapid sequence induction in adults, it is recommended to administer a dose of sodium thiopentone ranging from 3 to 5 mg per kilogram of body weight.
Further Reading:
There are four commonly used induction agents in the UK: propofol, ketamine, thiopentone, and etomidate.
Propofol is a 1% solution that produces significant venodilation and myocardial depression. It can also reduce cerebral perfusion pressure. The typical dose for propofol is 1.5-2.5 mg/kg. However, it can cause side effects such as hypotension, respiratory depression, and pain at the site of injection.
Ketamine is another induction agent that produces a dissociative state. It does not display a dose-response continuum, meaning that the effects do not necessarily increase with higher doses. Ketamine can cause bronchodilation, which is useful in patients with asthma. The initial dose for ketamine is 0.5-2 mg/kg, with a typical IV dose of 1.5 mg/kg. Side effects of ketamine include tachycardia, hypertension, laryngospasm, unpleasant hallucinations, nausea and vomiting, hypersalivation, increased intracranial and intraocular pressure, nystagmus and diplopia, abnormal movements, and skin reactions.
Thiopentone is an ultra-short acting barbiturate that acts on the GABA receptor complex. It decreases cerebral metabolic oxygen and reduces cerebral blood flow and intracranial pressure. The adult dose for thiopentone is 3-5 mg/kg, while the child dose is 5-8 mg/kg. However, these doses should be halved in patients with hypovolemia. Side effects of thiopentone include venodilation, myocardial depression, and hypotension. It is contraindicated in patients with acute porphyrias and myotonic dystrophy.
Etomidate is the most haemodynamically stable induction agent and is useful in patients with hypovolemia, anaphylaxis, and asthma. It has similar cerebral effects to thiopentone. The dose for etomidate is 0.15-0.3 mg/kg. Side effects of etomidate include injection site pain, movement disorders, adrenal insufficiency, and apnoea. It is contraindicated in patients with sepsis due to adrenal suppression.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 14
Incorrect
-
A 55 year old female patient is brought into the emergency department with urosepsis. It is decided to intubate her pending transfer to ITU. Your consultant requests you prepare propofol and suxamethonium for rapid sequence intubation (RSI). What is the recommended dose of suxamethonium for RSI in adults?
Your Answer:
Correct Answer: 1.5 mg/kg
Explanation:The appropriate dosage of suxamethonium for rapid sequence intubation (RSI) in adults is between 1 and 1.5 milligrams per kilogram of body weight.
Further Reading:
Rapid sequence induction (RSI) is a method used to place an endotracheal tube (ETT) in the trachea while minimizing the risk of aspiration. It involves inducing loss of consciousness while applying cricoid pressure, followed by intubation without face mask ventilation. The steps of RSI can be remembered using the 7 P’s: preparation, pre-oxygenation, pre-treatment, paralysis and induction, protection and positioning, placement with proof, and post-intubation management.
Preparation involves preparing the patient, equipment, team, and anticipating any difficulties that may arise during the procedure. Pre-oxygenation is important to ensure the patient has an adequate oxygen reserve and prolongs the time before desaturation. This is typically done by breathing 100% oxygen for 3 minutes. Pre-treatment involves administering drugs to counter expected side effects of the procedure and anesthesia agents used.
Paralysis and induction involve administering a rapid-acting induction agent followed by a neuromuscular blocking agent. Commonly used induction agents include propofol, ketamine, thiopentone, and etomidate. The neuromuscular blocking agents can be depolarizing (such as suxamethonium) or non-depolarizing (such as rocuronium). Depolarizing agents bind to acetylcholine receptors and generate an action potential, while non-depolarizing agents act as competitive antagonists.
Protection and positioning involve applying cricoid pressure to prevent regurgitation of gastric contents and positioning the patient’s neck appropriately. Tube placement is confirmed by visualizing the tube passing between the vocal cords, auscultation of the chest and stomach, end-tidal CO2 measurement, and visualizing misting of the tube. Post-intubation management includes standard care such as monitoring ECG, SpO2, NIBP, capnography, and maintaining sedation and neuromuscular blockade.
Overall, RSI is a technique used to quickly and safely secure the airway in patients who may be at risk of aspiration. It involves a series of steps to ensure proper preparation, oxygenation, drug administration, and tube placement. Monitoring and post-intubation care are also important aspects of RSI.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 15
Incorrect
-
You are managing a 62-year-old woman who has suffered a displaced fracture of the distal radius. Your plan is to perform a reduction of the fracture using intravenous regional anesthesia (Bier's block). You opt to administer prilocaine 0.5% for the regional block. What would be the appropriate dosage for this patient?
Your Answer:
Correct Answer: 3 mg/kg
Explanation:The suggested amount of Prilocaine for Bier’s block is 3mg per kilogram of body weight. It is important to note that there is no available formulation of prilocaine combined with adrenaline, unlike other local anesthetics.
Further Reading:
Bier’s block is a regional intravenous anesthesia technique commonly used for minor surgical procedures of the forearm or for reducing distal radius fractures in the emergency department (ED). It is recommended by NICE as the preferred anesthesia block for adults requiring manipulation of distal forearm fractures in the ED.
Before performing the procedure, a pre-procedure checklist should be completed, including obtaining consent, recording the patient’s weight, ensuring the resuscitative equipment is available, and monitoring the patient’s vital signs throughout the procedure. The air cylinder should be checked if not using an electronic machine, and the cuff should be checked for leaks.
During the procedure, a double cuff tourniquet is placed on the upper arm, and the arm is elevated to exsanguinate the limb. The proximal cuff is inflated to a pressure 100 mmHg above the systolic blood pressure, up to a maximum of 300 mmHg. The time of inflation and pressure should be recorded, and the absence of the radial pulse should be confirmed. 0.5% plain prilocaine is then injected slowly, and the time of injection is recorded. The patient should be warned about the potential cold/hot sensation and mottled appearance of the arm. After injection, the cannula is removed and pressure is applied to the venipuncture site to prevent bleeding. After approximately 10 minutes, the patient should have anesthesia and should not feel pain during manipulation. If anesthesia is successful, the manipulation can be performed, and a plaster can be applied by a second staff member. A check x-ray should be obtained with the arm lowered onto a pillow. The tourniquet should be monitored at all times, and the cuff should be inflated for a minimum of 20 minutes and a maximum of 45 minutes. If rotation of the cuff is required, it should be done after the manipulation and plaster application. After the post-reduction x-ray is satisfactory, the cuff can be deflated while observing the patient and monitors. Limb circulation should be checked prior to discharge, and appropriate follow-up and analgesia should be arranged.
There are several contraindications to performing Bier’s block, including allergy to local anesthetic, hypertension over 200 mm Hg, infection in the limb, lymphedema, methemoglobinemia, morbid obesity, peripheral vascular disease, procedures needed in both arms, Raynaud’s phenomenon, scleroderma, severe hypertension and sickle cell disease.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 16
Incorrect
-
A 27 year old woman is brought into the emergency department with a suspected wrist fracture after tripping at a concert. The patient has been receiving nitrous oxide during ambulance transport. The patient is informed that they can cease inhaling nitrous oxide after receiving opioid pain medication. What is the recommended course of action upon discontinuing nitrous oxide?
Your Answer:
Correct Answer: The patient should have oxygen administered for 5 minutes
Explanation:To prevent diffusion hypoxia, it is recommended to administer supplemental oxygen to patients for about 5 minutes after discontinuing nitrous oxide. This is important because there is a risk of developing diffusion hypoxia after the termination of nitrous oxide.
Further Reading:
Entonox® is a mixture of 50% nitrous oxide and 50% oxygen that can be used for self-administration to reduce anxiety. It can also be used alongside other anesthesia agents. However, its mechanism of action for anxiety reduction is not fully understood. The Entonox bottles are typically identified by blue and white color-coded collars, but a new standard will replace these with dark blue shoulders in the future. It is important to note that Entonox alone cannot be used as the sole maintenance agent in anesthesia.
One of the effects of nitrous oxide is the second-gas effect, where it speeds up the absorption of other inhaled anesthesia agents. Nitrous oxide enters the alveoli and diffuses into the blood, displacing nitrogen. This displacement causes the remaining alveolar gases to become more concentrated, increasing the fractional content of inhaled anesthesia gases and accelerating the uptake of volatile agents into the blood.
However, when nitrous oxide administration is stopped, it can cause diffusion hypoxia. Nitrous oxide exits the blood and diffuses back into the alveoli, while nitrogen diffuses in the opposite direction. Nitrous oxide enters the alveoli much faster than nitrogen leaves, resulting in the dilution of oxygen within the alveoli. This can lead to diffusion hypoxia, where the oxygen concentration in the alveoli is diluted, potentially causing oxygen deprivation in patients breathing air.
There are certain contraindications for using nitrous oxide, as it can expand in air-filled spaces. It should be avoided in conditions such as head injuries with intracranial air, pneumothorax, recent intraocular gas injection, and entrapped air following a recent underwater dive.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 17
Incorrect
-
You are summoned to the resuscitation bay to provide assistance with a patient who has experienced cardiac arrest. The team is getting ready to administer amiodarone. What is the mechanism of action of amiodarone in the context of cardiac arrest?
Your Answer:
Correct Answer: Blockade of potassium channels
Explanation:Amiodarone functions by inhibiting voltage-gated potassium channels, leading to an extended repolarization period and decreased excitability of the heart muscle.
Further Reading:
In the management of respiratory and cardiac arrest, several drugs are commonly used to help restore normal function and improve outcomes. Adrenaline is a non-selective agonist of adrenergic receptors and is administered intravenously at a dose of 1 mg every 3-5 minutes. It works by causing vasoconstriction, increasing systemic vascular resistance (SVR), and improving cardiac output by increasing the force of heart contraction. Adrenaline also has bronchodilatory effects.
Amiodarone is another drug used in cardiac arrest situations. It blocks voltage-gated potassium channels, which prolongs repolarization and reduces myocardial excitability. The initial dose of amiodarone is 300 mg intravenously after 3 shocks, followed by a dose of 150 mg after 5 shocks.
Lidocaine is an alternative to amiodarone in cardiac arrest situations. It works by blocking sodium channels and decreasing heart rate. The recommended dose is 1 mg/kg by slow intravenous injection, with a repeat half of the initial dose after 5 minutes. The maximum total dose of lidocaine is 3 mg/kg.
Magnesium sulfate is used to reverse myocardial hyperexcitability associated with hypomagnesemia. It is administered intravenously at a dose of 2 g over 10-15 minutes. An additional dose may be given if necessary, but the maximum total dose should not exceed 3 g.
Atropine is an antagonist of muscarinic acetylcholine receptors and is used to counteract the slowing of heart rate caused by the parasympathetic nervous system. It is administered intravenously at a dose of 500 mcg every 3-5 minutes, with a maximum dose of 3 mg.
Naloxone is a competitive antagonist for opioid receptors and is used in cases of respiratory arrest caused by opioid overdose. It has a short duration of action, so careful monitoring is necessary. The initial dose of naloxone is 400 micrograms, followed by 800 mcg after 1 minute. The dose can be gradually escalated up to 2 mg per dose if there is no response to the preceding dose.
It is important for healthcare professionals to have knowledge of the pharmacology and dosing schedules of these drugs in order to effectively manage respiratory and cardiac arrest situations.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 18
Incorrect
-
You are overseeing a patient who has been administered ketamine. You have concerns about restlessness and emergence phenomena during the recovery process. Which class of medication is commonly employed to manage emergence phenomena?
Your Answer:
Correct Answer: Benzodiazepines
Explanation:Benzodiazepines are medications that are utilized to address emergence phenomena, which are characterized by restlessness and distressing hallucinations experienced upon awakening from ketamine sedation or induction. These phenomena are more frequently observed in older children and adults, affecting approximately one out of every three adults. To manage emergence phenomena, benzodiazepines may be administered.
Further Reading:
There are four commonly used induction agents in the UK: propofol, ketamine, thiopentone, and etomidate.
Propofol is a 1% solution that produces significant venodilation and myocardial depression. It can also reduce cerebral perfusion pressure. The typical dose for propofol is 1.5-2.5 mg/kg. However, it can cause side effects such as hypotension, respiratory depression, and pain at the site of injection.
Ketamine is another induction agent that produces a dissociative state. It does not display a dose-response continuum, meaning that the effects do not necessarily increase with higher doses. Ketamine can cause bronchodilation, which is useful in patients with asthma. The initial dose for ketamine is 0.5-2 mg/kg, with a typical IV dose of 1.5 mg/kg. Side effects of ketamine include tachycardia, hypertension, laryngospasm, unpleasant hallucinations, nausea and vomiting, hypersalivation, increased intracranial and intraocular pressure, nystagmus and diplopia, abnormal movements, and skin reactions.
Thiopentone is an ultra-short acting barbiturate that acts on the GABA receptor complex. It decreases cerebral metabolic oxygen and reduces cerebral blood flow and intracranial pressure. The adult dose for thiopentone is 3-5 mg/kg, while the child dose is 5-8 mg/kg. However, these doses should be halved in patients with hypovolemia. Side effects of thiopentone include venodilation, myocardial depression, and hypotension. It is contraindicated in patients with acute porphyrias and myotonic dystrophy.
Etomidate is the most haemodynamically stable induction agent and is useful in patients with hypovolemia, anaphylaxis, and asthma. It has similar cerebral effects to thiopentone. The dose for etomidate is 0.15-0.3 mg/kg. Side effects of etomidate include injection site pain, movement disorders, adrenal insufficiency, and apnoea. It is contraindicated in patients with sepsis due to adrenal suppression.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 19
Incorrect
-
A 32 year old male presents to the emergency department with a laceration to the distal third of his finger caused by a box cutter. You intend to clean and examine the wound under local anesthesia. You gather the necessary equipment to administer a digital (ring) nerve block and prepare to inject the anesthetic at the base of the finger. How are the digital nerves arranged within the finger?
Your Answer:
Correct Answer: 2 palmar and 2 dorsal digital nerves
Explanation:The finger has a total of four digital nerves. Two of these nerves, known as the palmar digital nerves, run along the palm side of each finger. The other two nerves, called the dorsal digital nerves, are located on the back side of the finger. However, the dorsal nerve supply changes slightly at the level of the proximal IP joint. Beyond this point, the dorsal nerve supply comes from the dorsal branch of the palmar digital nerve.
Further Reading:
Digital nerve blocks are commonly used to numb the finger for various procedures such as foreign body removal, dislocation reduction, and suturing. Sensation to the finger is primarily provided by the proper digital nerves, which arise from the common digital nerve. Each common digital nerve divides into two proper digital nerves, which run along the palmar aspect of the finger. These proper digital nerves give off a dorsal branch that supplies the dorsal aspect of the finger.
The most common technique for digital nerve blocks is the digital (ring) block. The hand is cleaned and the injection sites are cleansed with an alcohol swab. A syringe containing 1% lidocaine is prepared, and the needle is inserted at the base of the finger from a dorsal approach. Lidocaine is infiltrated under the skin, and the needle is then advanced towards the palmar aspect of the finger to inject more lidocaine. This process is repeated on the opposite side of the finger.
It is important not to use lidocaine with adrenaline for this procedure, as it may cause constriction and ischemia of the digital artery. Lidocaine 1% is the preferred local anesthetic, and the maximum dose is 3 ml/kg up to 200 mg. Contraindications for digital nerve blocks include compromised circulation to the finger, infection at the planned injection site, contraindication to local anesthetic (e.g. allergy), and suspected compartment syndrome (which is rare in the finger).
Complications of digital nerve blocks can include vascular injury to the digital artery or vein, injury to the digital nerve, infection, pain, allergic reaction, intravascular injection (which can be avoided by aspirating prior to injection), and systemic local anesthetic toxicity (which is uncommon with typical doses of lidocaine).
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 20
Incorrect
-
A 25 year old male presents to the emergency department with a significant laceration on his right forearm. You suggest that the wound can be stitched under local anesthesia. You opt to use 1% lidocaine for the procedure. The patient has a weight of 70kg. Determine the maximum amount of lidocaine 1% that can be administered.
Your Answer:
Correct Answer: 18 ml
Explanation:Lidocaine is a medication that is available in a concentration of 10 mg per milliliter. The maximum recommended dose of lidocaine is 18 milliliters.
Further Reading:
Local anaesthetics, such as lidocaine, bupivacaine, and prilocaine, are commonly used in the emergency department for topical or local infiltration to establish a field block. Lidocaine is often the first choice for field block prior to central line insertion. These anaesthetics work by blocking sodium channels, preventing the propagation of action potentials.
However, local anaesthetics can enter the systemic circulation and cause toxic side effects if administered in high doses. Clinicians must be aware of the signs and symptoms of local anaesthetic systemic toxicity (LAST) and know how to respond. Early signs of LAST include numbness around the mouth or tongue, metallic taste, dizziness, visual and auditory disturbances, disorientation, and drowsiness. If not addressed, LAST can progress to more severe symptoms such as seizures, coma, respiratory depression, and cardiovascular dysfunction.
The management of LAST is largely supportive. Immediate steps include stopping the administration of local anaesthetic, calling for help, providing 100% oxygen and securing the airway, establishing IV access, and controlling seizures with benzodiazepines or other medications. Cardiovascular status should be continuously assessed, and conventional therapies may be used to treat hypotension or arrhythmias. Intravenous lipid emulsion (intralipid) may also be considered as a treatment option.
If the patient goes into cardiac arrest, CPR should be initiated following ALS arrest algorithms, but lidocaine should not be used as an anti-arrhythmic therapy. Prolonged resuscitation may be necessary, and intravenous lipid emulsion should be administered. After the acute episode, the patient should be transferred to a clinical area with appropriate equipment and staff for further monitoring and care.
It is important to report cases of local anaesthetic toxicity to the appropriate authorities. Additionally, regular clinical review should be conducted to exclude pancreatitis, as intravenous lipid emulsion can interfere with amylase or lipase assays.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 21
Incorrect
-
A 25 year old college student is brought into the ER after being discovered in a collapsed state with decreased consciousness in the early morning hours. You have concerns about the patient's airway and opt to insert an oropharyngeal airway. How would you determine the appropriate size for an oropharyngeal airway?
Your Answer:
Correct Answer: Distance between the patient's incisors and the angle of their mandible
Explanation:The size of an oropharyngeal airway (OPA or Guedel) can be determined by measuring the distance between the patient’s incisors and the angle of their mandible. To ensure proper fit, the OPA should be approximately the same length as this measurement. Please refer to the image in the notes for visual guidance.
Further Reading:
Techniques to keep the airway open:
1. Suction: Used to remove obstructing material such as blood, vomit, secretions, and food debris from the oral cavity.
2. Chin lift manoeuvres: Involves lifting the head off the floor and lifting the chin to extend the head in relation to the neck. Improves alignment of the pharyngeal, laryngeal, and oral axes.
3. Jaw thrust: Used in trauma patients with cervical spine injury concerns. Fingers are placed under the mandible and gently pushed upward.
Airway adjuncts:
1. Oropharyngeal airway (OPA): Prevents the tongue from occluding the airway. Sized according to the patient by measuring from the incisor teeth to the angle of the mandible. Inserted with the tip facing backwards and rotated 180 degrees once it touches the back of the palate or oropharynx.
2. Nasopharyngeal airway (NPA): Useful when it is difficult to open the mouth or in semi-conscious patients. Sized by length (distance between nostril and tragus of the ear) and diameter (roughly that of the patient’s little finger). Contraindicated in basal skull and midface fractures.
Laryngeal mask airway (LMA):
– Supraglottic airway device used as a first line or rescue airway.
– Easy to insert, sized according to patient’s bodyweight.
– Advantages: Easy insertion, effective ventilation, some protection from aspiration.
– Disadvantages: Risk of hypoventilation, greater gastric inflation than endotracheal tube (ETT), risk of aspiration and laryngospasm.Note: Proper training and assessment of the patient’s condition are essential for airway management.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 22
Incorrect
-
A 32 year old has undergone reduction of fracture-dislocation to the right shoulder under procedural sedation. Following the reduction, the patient reports feeling nauseated and subsequently vomits. What is the most significant risk factor for postoperative nausea and vomiting?
Your Answer:
Correct Answer: Female gender
Explanation:The most significant factor in predicting postoperative nausea and vomiting (PONV) is being female. Females are three times more likely than males to experience PONV. Additionally, not smoking increases the risk of PONV by about two times. Having a history of motion sickness, PONV, or both also approximately doubles the risk of PONV. Age is another factor, with older adults being less likely to suffer from PONV. In children, those below 3 years of age have a lower risk of PONV compared to those older than 3.
Further Reading:
postoperative nausea and vomiting (PONV) is a common occurrence following procedures performed under sedation or anesthesia. It can be highly distressing for patients. Several risk factors have been identified for PONV, including female gender, a history of PONV or motion sickness, non-smoking status, patient age, use of volatile anesthetics, longer duration of anesthesia, perioperative opioid use, use of nitrous oxide, and certain types of surgery such as abdominal and gynecological procedures.
To manage PONV, antiemetics are commonly used. These medications work by targeting different receptors in the body. Cyclizine and promethazine are histamine H1-receptor antagonists, which block the action of histamine and help reduce nausea and vomiting. Ondansetron is a serotonin 5-HT3 receptor antagonist, which blocks the action of serotonin and is effective in preventing and treating PONV. Prochlorperazine is a dopamine D2 receptor antagonist, which blocks the action of dopamine and helps alleviate symptoms of nausea and vomiting. Metoclopramide is also a dopamine D2 receptor antagonist and a 5-HT3 receptor antagonist, providing dual action against PONV. It is also a 5-HT4 receptor agonist, which helps improve gastric emptying and reduces the risk of PONV.
Assessment and management of PONV involves a comprehensive approach. Healthcare professionals need to assess the patient’s risk factors for PONV and take appropriate measures to prevent its occurrence. This may include selecting the appropriate anesthesia technique, using antiemetics prophylactically, and providing adequate pain control. In cases where PONV does occur, prompt treatment with antiemetics should be initiated to alleviate symptoms and provide relief to the patient. Close monitoring of the patient’s condition and response to treatment is essential to ensure effective management of PONV.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 23
Incorrect
-
You have been requested to arrange a teaching session on regional anesthesia for the recently inducted intern doctors. Your task is to educate them about the application of Bier's block. What is the shortest duration for tourniquet placement during a Bier's block procedure?
Your Answer:
Correct Answer: 20 minutes
Explanation:The minimum cuff inflation time for Bier’s block is set at 20 minutes, while the maximum time is 45 minutes. Similarly, the minimum tourniquet time is also 20 minutes, with a maximum of 45 minutes. The purpose of the minimum tourniquet time is to allow enough time for the local anaesthetic to bind to the local tissue and prevent it from being absorbed into the bloodstream. This helps reduce the risk of systemic toxicity from the anaesthetic. After 20 minutes, the chances of experiencing this toxicity should be significantly reduced. On the other hand, the maximum tourniquet time is set at 45 minutes to minimize the risk of complications such as distal ischaemia, nerve compression, and compartment syndrome.
Further Reading:
Bier’s block is a regional intravenous anesthesia technique commonly used for minor surgical procedures of the forearm or for reducing distal radius fractures in the emergency department (ED). It is recommended by NICE as the preferred anesthesia block for adults requiring manipulation of distal forearm fractures in the ED.
Before performing the procedure, a pre-procedure checklist should be completed, including obtaining consent, recording the patient’s weight, ensuring the resuscitative equipment is available, and monitoring the patient’s vital signs throughout the procedure. The air cylinder should be checked if not using an electronic machine, and the cuff should be checked for leaks.
During the procedure, a double cuff tourniquet is placed on the upper arm, and the arm is elevated to exsanguinate the limb. The proximal cuff is inflated to a pressure 100 mmHg above the systolic blood pressure, up to a maximum of 300 mmHg. The time of inflation and pressure should be recorded, and the absence of the radial pulse should be confirmed. 0.5% plain prilocaine is then injected slowly, and the time of injection is recorded. The patient should be warned about the potential cold/hot sensation and mottled appearance of the arm. After injection, the cannula is removed and pressure is applied to the venipuncture site to prevent bleeding. After approximately 10 minutes, the patient should have anesthesia and should not feel pain during manipulation. If anesthesia is successful, the manipulation can be performed, and a plaster can be applied by a second staff member. A check x-ray should be obtained with the arm lowered onto a pillow. The tourniquet should be monitored at all times, and the cuff should be inflated for a minimum of 20 minutes and a maximum of 45 minutes. If rotation of the cuff is required, it should be done after the manipulation and plaster application. After the post-reduction x-ray is satisfactory, the cuff can be deflated while observing the patient and monitors. Limb circulation should be checked prior to discharge, and appropriate follow-up and analgesia should be arranged.
There are several contraindications to performing Bier’s block, including allergy to local anesthetic, hypertension over 200 mm Hg, infection in the limb, lymphedema, methemoglobinemia, morbid obesity, peripheral vascular disease, procedures needed in both arms, Raynaud’s phenomenon, scleroderma, severe hypertension and sickle cell disease.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 24
Incorrect
-
A 72 year old male patient is brought into the emergency department with suspected COVID-19 pneumonia and sepsis. It is decided to intubate him pending transfer to ITU. Your consultant requests you prepare propofol and suxamethonium for rapid sequence intubation. What class of drug is suxamethonium?
Your Answer:
Correct Answer: Depolarising neuromuscular blocker
Explanation:Suxamethonium, also called succinylcholine, is currently the sole depolarising neuromuscular blocking drug used in clinical settings. It functions by binding to acetylcholine (Ach) receptors as an agonist. Unlike acetylcholine, it is not broken down by acetylcholinesterase, leading to a longer duration of binding and prolonged inhibition of neuromuscular transmission. Eventually, it is metabolized by plasma cholinesterase (pseudocholinesterase).
Further Reading:
Rapid sequence induction (RSI) is a method used to place an endotracheal tube (ETT) in the trachea while minimizing the risk of aspiration. It involves inducing loss of consciousness while applying cricoid pressure, followed by intubation without face mask ventilation. The steps of RSI can be remembered using the 7 P’s: preparation, pre-oxygenation, pre-treatment, paralysis and induction, protection and positioning, placement with proof, and post-intubation management.
Preparation involves preparing the patient, equipment, team, and anticipating any difficulties that may arise during the procedure. Pre-oxygenation is important to ensure the patient has an adequate oxygen reserve and prolongs the time before desaturation. This is typically done by breathing 100% oxygen for 3 minutes. Pre-treatment involves administering drugs to counter expected side effects of the procedure and anesthesia agents used.
Paralysis and induction involve administering a rapid-acting induction agent followed by a neuromuscular blocking agent. Commonly used induction agents include propofol, ketamine, thiopentone, and etomidate. The neuromuscular blocking agents can be depolarizing (such as suxamethonium) or non-depolarizing (such as rocuronium). Depolarizing agents bind to acetylcholine receptors and generate an action potential, while non-depolarizing agents act as competitive antagonists.
Protection and positioning involve applying cricoid pressure to prevent regurgitation of gastric contents and positioning the patient’s neck appropriately. Tube placement is confirmed by visualizing the tube passing between the vocal cords, auscultation of the chest and stomach, end-tidal CO2 measurement, and visualizing misting of the tube. Post-intubation management includes standard care such as monitoring ECG, SpO2, NIBP, capnography, and maintaining sedation and neuromuscular blockade.
Overall, RSI is a technique used to quickly and safely secure the airway in patients who may be at risk of aspiration. It involves a series of steps to ensure proper preparation, oxygenation, drug administration, and tube placement. Monitoring and post-intubation care are also important aspects of RSI.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 25
Incorrect
-
A 32-year-old man that has been involved in a car crash develops symptoms of acute airway blockage. You conclude that he needs to be intubated using a rapid sequence induction. You intend to use thiopental sodium as your induction medication.
What type of receptor does thiopental sodium act on to produce its effects?Your Answer:
Correct Answer: Gamma-aminobutyric acid (GABA)
Explanation:Thiopental sodium is a barbiturate with a very short duration of action. It is primarily used to induce anesthesia. Barbiturates are believed to primarily affect synapses by reducing the sensitivity of postsynaptic receptors to neurotransmitters and by interfering with the release of neurotransmitters from presynaptic neurons.
Thiopental sodium specifically binds to a unique site associated with a chloride ionophore at the GABAA receptor, which is responsible for the opening of chloride ion channels. This binding increases the length of time that the chloride ionophore remains open. As a result, the inhibitory effect of GABA on postsynaptic neurons in the thalamus is prolonged.
In summary, thiopental sodium acts as a short-acting barbiturate that is commonly used to induce anesthesia. It affects synapses by reducing postsynaptic receptor sensitivity and interfering with neurotransmitter release. By binding to a specific site at the GABAA receptor, thiopental sodium prolongs the inhibitory effect of GABA in the thalamus.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 26
Incorrect
-
A 28 year old female presents at the emergency department with a circular saw laceration. You opt to examine the wound using local anesthesia. What is the maximum dosage of Prilocaine that can be administered?
Your Answer:
Correct Answer: 6 mg/Kg
Explanation:The highest amount of Prilocaine that can be administered without adrenaline is 6 mg per kilogram of body weight. However, if Prilocaine is used in combination with adrenaline, the maximum dose increases to 8mg per kilogram.
Further Reading:
Local anaesthetics, such as lidocaine, bupivacaine, and prilocaine, are commonly used in the emergency department for topical or local infiltration to establish a field block. Lidocaine is often the first choice for field block prior to central line insertion. These anaesthetics work by blocking sodium channels, preventing the propagation of action potentials.
However, local anaesthetics can enter the systemic circulation and cause toxic side effects if administered in high doses. Clinicians must be aware of the signs and symptoms of local anaesthetic systemic toxicity (LAST) and know how to respond. Early signs of LAST include numbness around the mouth or tongue, metallic taste, dizziness, visual and auditory disturbances, disorientation, and drowsiness. If not addressed, LAST can progress to more severe symptoms such as seizures, coma, respiratory depression, and cardiovascular dysfunction.
The management of LAST is largely supportive. Immediate steps include stopping the administration of local anaesthetic, calling for help, providing 100% oxygen and securing the airway, establishing IV access, and controlling seizures with benzodiazepines or other medications. Cardiovascular status should be continuously assessed, and conventional therapies may be used to treat hypotension or arrhythmias. Intravenous lipid emulsion (intralipid) may also be considered as a treatment option.
If the patient goes into cardiac arrest, CPR should be initiated following ALS arrest algorithms, but lidocaine should not be used as an anti-arrhythmic therapy. Prolonged resuscitation may be necessary, and intravenous lipid emulsion should be administered. After the acute episode, the patient should be transferred to a clinical area with appropriate equipment and staff for further monitoring and care.
It is important to report cases of local anaesthetic toxicity to the appropriate authorities. Additionally, regular clinical review should be conducted to exclude pancreatitis, as intravenous lipid emulsion can interfere with amylase or lipase assays.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 27
Incorrect
-
You have just performed rapid sequence induction using ketamine and rocuronium and placed an endotracheal tube under the guidance of a consultant. What category of medication does rocuronium belong to?
Your Answer:
Correct Answer: Non-depolarizing neuromuscular blocker
Explanation:Rocuronium is a type of neuromuscular blocker that does not cause depolarization.
Further Reading:
Rapid sequence induction (RSI) is a method used to place an endotracheal tube (ETT) in the trachea while minimizing the risk of aspiration. It involves inducing loss of consciousness while applying cricoid pressure, followed by intubation without face mask ventilation. The steps of RSI can be remembered using the 7 P’s: preparation, pre-oxygenation, pre-treatment, paralysis and induction, protection and positioning, placement with proof, and post-intubation management.
Preparation involves preparing the patient, equipment, team, and anticipating any difficulties that may arise during the procedure. Pre-oxygenation is important to ensure the patient has an adequate oxygen reserve and prolongs the time before desaturation. This is typically done by breathing 100% oxygen for 3 minutes. Pre-treatment involves administering drugs to counter expected side effects of the procedure and anesthesia agents used.
Paralysis and induction involve administering a rapid-acting induction agent followed by a neuromuscular blocking agent. Commonly used induction agents include propofol, ketamine, thiopentone, and etomidate. The neuromuscular blocking agents can be depolarizing (such as suxamethonium) or non-depolarizing (such as rocuronium). Depolarizing agents bind to acetylcholine receptors and generate an action potential, while non-depolarizing agents act as competitive antagonists.
Protection and positioning involve applying cricoid pressure to prevent regurgitation of gastric contents and positioning the patient’s neck appropriately. Tube placement is confirmed by visualizing the tube passing between the vocal cords, auscultation of the chest and stomach, end-tidal CO2 measurement, and visualizing misting of the tube. Post-intubation management includes standard care such as monitoring ECG, SpO2, NIBP, capnography, and maintaining sedation and neuromuscular blockade.
Overall, RSI is a technique used to quickly and safely secure the airway in patients who may be at risk of aspiration. It involves a series of steps to ensure proper preparation, oxygenation, drug administration, and tube placement. Monitoring and post-intubation care are also important aspects of RSI.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 28
Incorrect
-
A 10 year old girl is brought to the emergency department by her parents after a fall while playing outside. The patient has a significant wound that needs to be cleaned and closed. You decide to examine and clean the wound under ketamine sedation as the patient is very upset. What type of sedation is typical of Ketamine?
Your Answer:
Correct Answer: Dissociative sedation
Explanation:Ketamine induces a distinct type of sedation known as dissociative sedation. This sedation state is unlike any other and is characterized by a trance-like, cataleptic condition. It provides deep pain relief and memory loss while still maintaining important protective reflexes for the airway, spontaneous breathing, and overall stability of the heart and lungs. Dissociative sedation with ketamine does not fit into the conventional categories of sedation.
Further Reading:
Procedural sedation is commonly used by emergency department (ED) doctors to minimize pain and discomfort during procedures that may be painful or distressing for patients. Effective procedural sedation requires the administration of analgesia, anxiolysis, sedation, and amnesia. This is typically achieved through the use of a combination of short-acting analgesics and sedatives.
There are different levels of sedation, ranging from minimal sedation (anxiolysis) to general anesthesia. It is important for clinicians to understand the level of sedation being used and to be able to manage any unintended deeper levels of sedation that may occur. Deeper levels of sedation are similar to general anesthesia and require the same level of care and monitoring.
Various drugs can be used for procedural sedation, including propofol, midazolam, ketamine, and fentanyl. Each of these drugs has its own mechanism of action and side effects. Propofol is commonly used for sedation, amnesia, and induction and maintenance of general anesthesia. Midazolam is a benzodiazepine that enhances the effect of GABA on the GABA A receptors. Ketamine is an NMDA receptor antagonist and is used for dissociative sedation. Fentanyl is a highly potent opioid used for analgesia and sedation.
The doses of these drugs for procedural sedation in the ED vary depending on the drug and the route of administration. It is important for clinicians to be familiar with the appropriate doses and onset and peak effect times for each drug.
Safe sedation requires certain requirements, including appropriate staffing levels, competencies of the sedating practitioner, location and facilities, and monitoring. The level of sedation being used determines the specific requirements for safe sedation.
After the procedure, patients should be monitored until they meet the criteria for safe discharge. This includes returning to their baseline level of consciousness, having vital signs within normal limits, and not experiencing compromised respiratory status. Pain and discomfort should also be addressed before discharge.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 29
Incorrect
-
A 28-year-old patient has arrived at the emergency department following an accident at a construction site. The skin has been lacerated by a dropped piece of stainless steel sheeting with a sharp edge. The plan is to suture the wound after infiltrating the area with local anesthesia. In the suture room, you find Lidocaine 1% with Adrenaline (Epinephrine) 1:200,000 and Bupivacaine 0.5% available. What is a contraindication to using local anesthesia combined with adrenaline?
Your Answer:
Correct Answer: Area to be infiltrated is in periphery
Explanation:Adrenaline is known to cause vasoconstriction, which is the narrowing of blood vessels. As a result, it is not recommended to use adrenaline in areas such as the peripheries, end arteries, and flap lacerations because it can increase the risk of ischemia, which is a lack of blood supply to tissues. Additionally, there are certain contraindications to using adrenaline locally, including conditions like pheochromocytoma, hypertension, and arteriosclerosis. It is important to be cautious of these factors as adrenaline’s vasoconstrictive effects can also lead to an elevation in blood pressure.
Further Reading:
Local anaesthetics, such as lidocaine, bupivacaine, and prilocaine, are commonly used in the emergency department for topical or local infiltration to establish a field block. Lidocaine is often the first choice for field block prior to central line insertion. These anaesthetics work by blocking sodium channels, preventing the propagation of action potentials.
However, local anaesthetics can enter the systemic circulation and cause toxic side effects if administered in high doses. Clinicians must be aware of the signs and symptoms of local anaesthetic systemic toxicity (LAST) and know how to respond. Early signs of LAST include numbness around the mouth or tongue, metallic taste, dizziness, visual and auditory disturbances, disorientation, and drowsiness. If not addressed, LAST can progress to more severe symptoms such as seizures, coma, respiratory depression, and cardiovascular dysfunction.
The management of LAST is largely supportive. Immediate steps include stopping the administration of local anaesthetic, calling for help, providing 100% oxygen and securing the airway, establishing IV access, and controlling seizures with benzodiazepines or other medications. Cardiovascular status should be continuously assessed, and conventional therapies may be used to treat hypotension or arrhythmias. Intravenous lipid emulsion (intralipid) may also be considered as a treatment option.
If the patient goes into cardiac arrest, CPR should be initiated following ALS arrest algorithms, but lidocaine should not be used as an anti-arrhythmic therapy. Prolonged resuscitation may be necessary, and intravenous lipid emulsion should be administered. After the acute episode, the patient should be transferred to a clinical area with appropriate equipment and staff for further monitoring and care.
It is important to report cases of local anaesthetic toxicity to the appropriate authorities. Additionally, regular clinical review should be conducted to exclude pancreatitis, as intravenous lipid emulsion can interfere with amylase or lipase assays.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 30
Incorrect
-
A 42 year old male patient is brought into the emergency department due to a recent onset of high fever and feeling unwell that has worsened over the past day, with the patient becoming increasingly drowsy. Despite initial resuscitation efforts, there is minimal response and it is decided to intubate the patient before transferring to the intensive care unit for ventilatory and inotropic support. Your consultant requests that you apply pressure over the cricoid during the procedure. What is the reason for this?
Your Answer:
Correct Answer: Prevent aspiration of gastric contents
Explanation:Cricoid pressure is applied during intubation to compress the oesophagus and prevent the backflow of stomach contents, reducing the risk of aspiration.
Further Reading:
Rapid sequence induction (RSI) is a method used to place an endotracheal tube (ETT) in the trachea while minimizing the risk of aspiration. It involves inducing loss of consciousness while applying cricoid pressure, followed by intubation without face mask ventilation. The steps of RSI can be remembered using the 7 P’s: preparation, pre-oxygenation, pre-treatment, paralysis and induction, protection and positioning, placement with proof, and post-intubation management.
Preparation involves preparing the patient, equipment, team, and anticipating any difficulties that may arise during the procedure. Pre-oxygenation is important to ensure the patient has an adequate oxygen reserve and prolongs the time before desaturation. This is typically done by breathing 100% oxygen for 3 minutes. Pre-treatment involves administering drugs to counter expected side effects of the procedure and anesthesia agents used.
Paralysis and induction involve administering a rapid-acting induction agent followed by a neuromuscular blocking agent. Commonly used induction agents include propofol, ketamine, thiopentone, and etomidate. The neuromuscular blocking agents can be depolarizing (such as suxamethonium) or non-depolarizing (such as rocuronium). Depolarizing agents bind to acetylcholine receptors and generate an action potential, while non-depolarizing agents act as competitive antagonists.
Protection and positioning involve applying cricoid pressure to prevent regurgitation of gastric contents and positioning the patient’s neck appropriately. Tube placement is confirmed by visualizing the tube passing between the vocal cords, auscultation of the chest and stomach, end-tidal CO2 measurement, and visualizing misting of the tube. Post-intubation management includes standard care such as monitoring ECG, SpO2, NIBP, capnography, and maintaining sedation and neuromuscular blockade.
Overall, RSI is a technique used to quickly and safely secure the airway in patients who may be at risk of aspiration. It involves a series of steps to ensure proper preparation, oxygenation, drug administration, and tube placement. Monitoring and post-intubation care are also important aspects of RSI.
-
This question is part of the following fields:
- Basic Anaesthetics
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)