-
Question 1
Correct
-
Which condition is characterized by microcephaly?
Your Answer: Fetal alcohol syndrome
Explanation:Microcephaly is a characteristic of fetal alcohol syndrome, while macrocephaly is associated with all the other options except for Asperger’s, which is not typically linked to any abnormality in head size.
Microcephaly: A Condition of Small Head Size
Microcephaly is a condition characterized by a small head size. It can be a feature of various conditions, including fetal alcohol syndrome, Down’s syndrome, Edward’s syndrome, Patau syndrome, Angelman syndrome, De Lange syndrome, Prader-Willi syndrome, and Cri-du-chat syndrome. Each of these conditions has its own unique set of symptoms and causes, but they all share the common feature of microcephaly. This condition can have a range of effects on a person’s development, including intellectual disability, seizures, and motor problems. Early diagnosis and intervention can help manage the symptoms and improve outcomes for individuals with microcephaly.
-
This question is part of the following fields:
- Genetics
-
-
Question 2
Incorrect
-
Can you provide an accurate statement about the use of pairwise and probandwise concordance rates in twin studies?
Your Answer: Probandwise rates should not be used for heritable conditions
Correct Answer: Probandwise concordance rates are preferred for genetic counselling
Explanation:Both MZ and DZ twins can be analyzed using pairwise and probandwise rates, but probandwise rates are more beneficial in genetic counseling scenarios as they provide information specific to individuals.
Concordance rates are used in twin studies to investigate the genetic contribution to a trait of condition. Concordance refers to the presence of the same trait of condition in both members of a twin pair. There are two main methods of calculating twin concordance rates: pairwise and probandwise. These methods produce different results and are calculated differently. The probandwise method is generally preferred as it provides more meaningful information in a genetic counseling setting.
The table below shows an example of a population of 100,000 MZ twin pairs, and the pairwise and probandwise concordance rates calculated from this population. Pairwise concordance is the probability that both twins in a pair are affected by the trait of condition. Probandwise concordance is the probability that a twin is affected given that their co-twin is affected. Both methods are conditional probabilities, but pairwise applies to twin pairs, while probandwise applies to individual twins. This is why probandwise is preferred, as it helps predict the risk at the individual level.
-
This question is part of the following fields:
- Genetics
-
-
Question 3
Incorrect
-
What is the closest estimate of heritability in schizophrenia?
Your Answer: 80%
Correct Answer: 55%
Explanation:Heritability: Understanding the Concept
Heritability is a concept that is often misunderstood. It is not a measure of the extent to which genes cause a condition in an individual. Rather, it is the proportion of phenotypic variance attributable to genetic variance. In other words, it tells us how much of the variation in a condition seen in a population is due to genetic factors. Heritability is calculated using statistical techniques and can range from 0.0 to 1.0. For human behavior, most estimates of heritability fall in the moderate range of .30 to .60.
The quantity (1.0 – heritability) gives the environment ability of the trait. This is the proportion of phenotypic variance attributable to environmental variance. The following table provides estimates of heritability for major conditions:
Condition Heritability estimate (approx)
ADHD 85%
Autism 70%
Schizophrenia 55%
Bipolar 55%
Anorexia 35%
Alcohol dependence 35%
Major depression 30%
OCD 25%It is important to note that heritability tells us nothing about individuals. It is a population-level measure that helps us understand the relative contributions of genetic and environmental factors to a particular condition.
-
This question is part of the following fields:
- Genetics
-
-
Question 4
Incorrect
-
Which enzyme is believed to play a role in the likelihood of developing alcohol addiction?
Your Answer: Acetate dehydrogenase
Correct Answer: Aldehyde dehydrogenase
Explanation:Functional polymorphisms in two alcohol dehydrogenase genes (ADHIB and ADH1C on chromosome 4) and one aldehyde dehydrogenase gene (ALDH2 on chromosome 12) have been linked to lower rates of alcohol dependence. The strongest association is with the ALDH2*2 allele, which is almost exclusively found in Asian populations. Other alleles, such as ADH1B*2, ADH1B*3, and ADHlC*i, found in varying prevalence in different ethnic groups, have also been associated with lower rates of alcohol dependence.
The proposed mechanism for these associations is that the isoenzymes encoded by these alleles lead to an accumulation of acetaldehyde during alcohol metabolism. ALDH2*2 theoretically leads to a slower removal of acetaldehyde than ALDH2*1, while ADH1B*2 and ADH1B*3 lead to a more rapid production of acetaldehyde than ADHIB*I. It is believed that higher levels of acetaldehyde cause more intense reactions to alcohol and lead to lower levels of alcohol intake.
Genetics and Alcoholism
Alcoholism tends to run in families, and several studies confirm that biological children of alcoholics are more likely to develop alcoholism even when adopted by parents without the condition. Monozygotic twins have a greater concordance rate for alcoholism than dizygotic twins. Heritability estimates range from 45 to 65 percent for both men and women. While genetic differences affect risk, there is no “gene for alcoholism,” and both environmental and social factors weigh heavily on the outcome.
The genes with the clearest contribution to the risk for alcoholism and alcohol consumption are alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2). The first step in ethanol metabolism is oxidation to acetaldehyde, by ADHs. The second step is metabolism of the acetaldehyde to acetate by ALDHs. Individuals carrying even a single copy of the ALDH2*504K display the “Asian flushing reaction” when they consume even small amounts of alcohol. There is one significant genetic polymorphism of the ALDH2 gene, resulting in allelic variants ALDH2*1 and ALDH2*2, which is virtually inactive. ALDH2*2 is present in about 50 percent of the Taiwanese, Han Chinese, and Japanese populations. It is extremely rare outside Asia. Nearly no individuals of European of African descent carry this allele. ALDH2*504K has repeatedly been demonstrated to have a protective effect against alcohol use disorders.
The three different class I gene loci, ADH1A (alpha), ADH1B (beta), and ADH1C (gamma) are situated close to each other in the region 4q2123. The alleles ADH1C*1 and ADH1B*2 code for fast metabolism of alcohol. The ADH1B*1 slow allele is very common among Caucasians, with approximately 95 percent having the homozygous ADH1B*1/1 genotype and 5 percent having the heterozygous ADH1B*1/2 genotype. The ADH1B*2 allele is the most common allele in Asian populations. In African populations, the ADH1B*1 allele is the most common.
-
This question is part of the following fields:
- Genetics
-
-
Question 5
Incorrect
-
A 9-year-old child with emerging evidence of a learning disability is referred by the paediatricians. They have an unusual facial appearance consisting of a broad, flat nasal bridge and a high forehead. The paediatrician describes this as a 'Greek warrior helmet' appearance. The eyes are widely spaced and may be protruding.
The child had recurrent seizures as a child, but this have begun to resolve.
Which of the following chromosomal abnormalities do you most suspect?Your Answer: Trisomy 18
Correct Answer: A deletion near the end of 4p
Explanation:Wolf-Hirschhorn syndrome, also referred to as 4p deletion syndrome, is caused by the loss of genetic material located towards the end of the short arm (p) of chromosome 4. This condition is often characterized by a distinct facial appearance resembling a Greek warrior helmet.
Chromosomal location is an important factor in understanding genetic conditions. As a candidate for the MRCPsych, it is essential to be able to link specific disorders to their corresponding chromosomes. For instance, Presenilin 2 is associated with Alzheimer’s disease and is located on chromosome 1. Similarly, DISC-1 and DISC-2 are linked to schizophrenia and are located on chromosome 1 and 6, respectively. RGS-4, which interacts with neuregulin, is also associated with schizophrenia and is located on chromosome 1.
Other disorders linked to specific chromosomes include Huntington’s disease (chromosome 4), Cri-du-Chat syndrome (chromosome 5), and Prader-Willi and Angelman syndromes (chromosome 15). Chromosome 17 is associated with familial frontotemporal dementia, Smith-Magenis syndrome, and neurofibromatosis 1. Chromosome 21 is linked to Down’s syndrome, while chromosome X/Y is associated with Fragile X, Lesch-Nyhan syndrome, Turners syndrome, and Klinefelter’s syndrome.
In summary, understanding the chromosomal location of genetic disorders is crucial for psychiatrists and other medical professionals. It helps in the diagnosis, treatment, and management of these conditions.
-
This question is part of the following fields:
- Genetics
-
-
Question 6
Correct
-
What is the typical number of autosomes found in a human somatic cell?
Your Answer: 44
Explanation:Aneuploidy: Abnormal Chromosome Numbers
Aneuploidy refers to the presence of an abnormal number of chromosomes, which can result from errors during meiosis. Typically, human cells have 23 pairs of chromosomes, but aneuploidy can lead to extra of missing chromosomes. Trisomies, which involve the presence of an additional chromosome, are the most common aneuploidies in humans. However, most trisomies are not compatible with life, and only trisomy 21 (Down’s syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome) survive to birth. Aneuploidy can result in imbalances in gene expression, which can lead to a range of symptoms and developmental issues.
Compared to autosomal trisomies, humans are more able to tolerate extra sex chromosomes. Klinefelter’s syndrome, which involves the presence of an extra X chromosome, is the most common sex chromosome aneuploidy. Individuals with Klinefelter’s and XYY often remain undiagnosed, but they may experience reduced sexual development and fertility. Monosomies, which involve the loss of a chromosome, are rare in humans. The only viable human monosomy involves the X chromosome and results in Turner’s syndrome. Turner’s females display a wide range of symptoms, including infertility and impaired sexual development.
The frequency and severity of aneuploidies vary widely. Down’s syndrome is the most common viable autosomal trisomy, affecting 1 in 800 births. Klinefelter’s syndrome affects 1-2 in 1000 male births, while XYY syndrome affects 1 in 1000 male births and Triple X syndrome affects 1 in 1000 births. Turner syndrome is less common, affecting 1 in 5000 female births. Edwards syndrome and Patau syndrome are rare, affecting 1 in 6000 and 1 in 10,000 births, respectively. Understanding the genetic basis and consequences of aneuploidy is important for diagnosis, treatment, and genetic counseling.
-
This question is part of the following fields:
- Genetics
-
-
Question 7
Incorrect
-
Which inheritance pattern is not consistent with Mendelian genetics?
Your Answer: Y-linked
Correct Answer: All are types of Mendelian inheritance
Explanation:The Law of Segregation and the Law of Independent Assortment are two fundamental principles of Mendelian inheritance. The Law of Segregation states that during gamete formation, the two alleles of a gene separate from each other so that each gamete receives only one allele. This means that offspring inherit one allele from each parent. The Law of Independent Assortment states that the inheritance of one gene does not affect the inheritance of another gene. This means that the alleles of different genes are distributed randomly into gametes. These laws are essential in understanding the inheritance patterns of single gene disorders. By following these laws, scientists can predict the likelihood of certain traits of disorders being passed down from one generation to the next.
-
This question is part of the following fields:
- Genetics
-
-
Question 8
Incorrect
-
How many daughter cells are generated from the meiosis of a single parent cell?
Your Answer: 16
Correct Answer: 4
Explanation:Cytokinesis: The Final Stage of Cell Division
Cytokinesis is the final stage of cell division, where the cell splits into two daughter cells, each with a nucleus. This process is essential for the growth and repair of tissues in multicellular organisms. In mitosis, cytokinesis occurs after telophase, while in meiosis, it occurs after telophase I and telophase II.
During cytokinesis, a contractile ring made of actin and myosin filaments forms around the cell’s equator, constricting it like a belt. This ring gradually tightens, pulling the cell membrane inward and creating a furrow that deepens until it reaches the center of the cell. Eventually, the furrow meets in the middle, dividing the cell into two daughter cells.
In animal cells, cytokinesis is achieved by the formation of a cleavage furrow, while in plant cells, a cell plate forms between the two daughter nuclei, which eventually develops into a new cell wall. The timing and mechanism of cytokinesis are tightly regulated by a complex network of proteins and signaling pathways, ensuring that each daughter cell receives the correct amount of cytoplasm and organelles.
Overall, cytokinesis is a crucial step in the cell cycle, ensuring that genetic material is equally distributed between daughter cells and allowing for the growth and development of multicellular organisms.
-
This question is part of the following fields:
- Genetics
-
-
Question 9
Incorrect
-
What type of chromosome is most vulnerable to Robertsonian translocations?
Your Answer: Metacentric
Correct Answer: Acrocentric
Explanation:Robertsonian translocations can involve chromosomes with very small p arms, which are known as acrocentric chromosomes.
Understanding Centromeres
A centromere is a crucial part of DNA that connects two sister chromatids. It plays a vital role in cell division by keeping the sister chromatids aligned and allowing the chromosomes to be lined up during metaphase. The position of the centromere divides the chromosome into two arms, the long (q) and the short (p). Chromosomes are classified based on the position of the centromere. Metacentric chromosomes have arms of roughly equal length, and they can be formed by Robertsonian translocations. Acrocentric chromosomes can also be involved in Robertsonian translocations. Monocentric chromosomes have only one centromere and form a narrow constriction, while holocentric chromosomes have the entire length of the chromosome acting as the centromere. Understanding the role and classification of centromeres is essential in comprehending the process of cell division.
-
This question is part of the following fields:
- Genetics
-
-
Question 10
Correct
-
What condition is inherited in a pattern consistent with X-linked recessive inheritance?
Your Answer: Hunter's syndrome
Explanation:Inheritance Patterns and Examples
Autosomal Dominant:
Neurofibromatosis type 1 and 2, tuberous sclerosis, achondroplasia, Huntington disease, and Noonan’s syndrome are all examples of conditions that follow an autosomal dominant inheritance pattern. This means that only one copy of the mutated gene is needed to cause the condition.Autosomal Recessive:
Phenylketonuria, homocystinuria, Hurler’s syndrome, galactosaemia, Tay-Sach’s disease, Friedreich’s ataxia, Wilson’s disease, and cystic fibrosis are all examples of conditions that follow an autosomal recessive inheritance pattern. This means that two copies of the mutated gene are needed to cause the condition.X-Linked Dominant:
Vitamin D resistant rickets and Rett syndrome are examples of conditions that follow an X-linked dominant inheritance pattern. This means that the mutated gene is located on the X chromosome and only one copy of the gene is needed to cause the condition.X-Linked Recessive:
Cerebellar ataxia, Hunter’s syndrome, and Lesch-Nyhan are examples of conditions that follow an X-linked recessive inheritance pattern. This means that the mutated gene is located on the X chromosome and two copies of the gene are needed to cause the condition.Mitochondrial:
Leber’s hereditary optic neuropathy and Kearns-Sayre syndrome are examples of conditions that follow a mitochondrial inheritance pattern. This means that the mutated gene is located in the mitochondria and is passed down from the mother to her offspring. -
This question is part of the following fields:
- Genetics
-
-
Question 11
Incorrect
-
On which chromosome is the candidate gene DISC1, which has been linked to schizophrenia, located?
Your Answer: 5
Correct Answer: 1
Explanation:Schizophrenia is a complex disorder that is associated with multiple candidate genes. No single gene has been identified as the sole cause of schizophrenia, and it is believed that the more genes involved, the greater the risk. Some of the important candidate genes for schizophrenia include DTNBP1, COMT, NRG1, G72, RGS4, DAOA, DISC1, and DRD2. Among these, neuregulin, dysbindin, and DISC1 are the most replicated and plausible genes, with COMT being the strongest candidate gene due to its role in dopamine metabolism. Low activity of the COMT gene has been associated with obsessive-compulsive disorder and schizophrenia. Neuregulin 1 is a growth factor that stimulates neuron development and differentiation, and increased neuregulin signaling in schizophrenia may suppress the NMDA receptor, leading to lowered glutamate levels. Dysbindin is involved in the biogenesis of lysosome-related organelles, and its expression is decreased in schizophrenia. DISC1 encodes a multifunctional protein that influences neuronal development and adult brain function, and it is disrupted in schizophrenia. It is located at the breakpoint of a balanced translocation identified in a large Scottish family with schizophrenia, schizoaffective disorder, and other major mental illnesses.
-
This question is part of the following fields:
- Genetics
-
-
Question 12
Incorrect
-
What is the more commonly used name for Trisomy 13 syndrome?
Your Answer: Downs syndrome
Correct Answer: Patau syndrome
Explanation:Genetic Conditions and Their Features
Genetic conditions are disorders caused by abnormalities in an individual’s DNA. These conditions can affect various aspects of a person’s health, including physical and intellectual development. Some of the most common genetic conditions and their features are:
– Downs (trisomy 21): Short stature, almond-shaped eyes, low muscle tone, and intellectual disability.
– Angelman syndrome (Happy puppet syndrome): Flapping hand movements, ataxia, severe learning disability, seizures, and sleep problems.
– Prader-Willi: Hyperphagia, excessive weight gain, short stature, and mild learning disability.
– Cri du chat: Characteristic cry, hypotonia, down-turned mouth, and microcephaly.
– Velocardiofacial syndrome (DiGeorge syndrome): Cleft palate, cardiac problems, and learning disabilities.
– Edwards syndrome (trisomy 18): Severe intellectual disability, kidney malformations, and physical abnormalities.
– Lesch-Nyhan syndrome: Self-mutilation, dystonia, and writhing movements.
– Smith-Magenis syndrome: Pronounced self-injurious behavior, self-hugging, and a hoarse voice.
– Fragile X: Elongated face, large ears, hand flapping, and shyness.
– Wolf Hirschhorn syndrome: Mild to severe intellectual disability, seizures, and physical abnormalities.
– Patau syndrome (trisomy 13): Severe intellectual disability, congenital heart malformations, and physical abnormalities.
– Rett syndrome: Regression and loss of skills, hand-wringing movements, and profound learning disability.
– Tuberous sclerosis: Hamartomatous tumors, epilepsy, and behavioral issues.
– Williams syndrome: Elfin-like features, social disinhibition, and advanced verbal skills.
– Rubinstein-Taybi syndrome: Short stature, friendly disposition, and moderate learning disability.
– Klinefelter syndrome: Extra X chromosome, low testosterone, and speech and language issues.
– Jakob’s syndrome: Extra Y chromosome, tall stature, and lower mean intelligence.
– Coffin-Lowry syndrome: Short stature, slanting eyes, and severe learning difficulty.
– Turner syndrome: Short stature, webbed neck, and absent periods.
– Niemann Pick disease (types A and B): Abdominal swelling, cherry red spot, and feeding difficulties.It is important to note that these features may vary widely among individuals with the same genetic condition. Early diagnosis and intervention can help individuals with genetic conditions reach their full potential and improve their quality of life.
-
This question is part of the following fields:
- Genetics
-
-
Question 13
Correct
-
What is the most frequently occurring genetic mutation in individuals with early onset familial Alzheimer's disease?
Your Answer: PSEN1
Explanation:Genetics plays a role in the development of Alzheimer’s disease, with different genes being associated with early onset and late onset cases. Early onset Alzheimer’s, which is rare, is linked to three genes: amyloid precursor protein (APP), presenilin one (PSEN-1), and presenilin two (PSEN-2). The APP gene, located on chromosome 21, produces a protein that is a precursor to amyloid. The presenilins are enzymes that cleave APP to produce amyloid beta fragments, and alterations in the ratios of these fragments can lead to plaque formation. Late onset Alzheimer’s is associated with the apolipoprotein E (APOE) gene on chromosome 19, with the E4 variant increasing the risk of developing the disease. People with Down’s syndrome are also at high risk of developing Alzheimer’s due to inheriting an extra copy of the APP gene.
-
This question is part of the following fields:
- Genetics
-
-
Question 14
Incorrect
-
How can a group of genetic defects causing a single condition be described?
Your Answer: Linkage
Correct Answer: Heterogeneity
Explanation:Pleiotropy refers to a genetic phenomenon where a single gene has an impact on multiple observable traits. This occurs because the gene produces a product that is utilized by various cells. An instance of pleiotropy is the human condition known as PKU (phenylketonuria).
Understanding Heterogeneity in Genetic Diseases
Heterogeneity is a term used to describe the presence of different genetic defects that can cause the same disease. This phenomenon is commonly observed in genetic disorders, where multiple mutations can lead to the same clinical presentation. For instance, the ABO blood group system is an example of heterogeneity, where different combinations of alleles can result in the same blood type.
Understanding heterogeneity is crucial for accurate diagnosis and treatment of genetic diseases. Identifying the specific genetic defect responsible for a particular disease can help tailor therapies and predict disease progression. However, the presence of heterogeneity can also complicate diagnosis and treatment, as different mutations may require different approaches.
Overall, heterogeneity highlights the complexity of genetic diseases and underscores the need for personalized medicine approaches that take into account individual genetic variations.
-
This question is part of the following fields:
- Genetics
-
-
Question 15
Correct
-
The Hardy-Weinberg principle concerns which of the following?
Your Answer: Allelic frequency in populations
Explanation:Hardy-Weinberg Principle and Allele Frequency
Allele frequency refers to the proportion of a population that carries a specific variant at a particular gene locus. It can be calculated by dividing the number of individual alleles of a certain type by the total number of alleles in a population. The Hardy-Weinberg Principle states that both allele and genotype frequencies in a population remain constant from generation to generation unless specific disturbing influences are introduced. To remain in equilibrium, five conditions must be met, including no mutations, no gene flow, random mating, a sufficiently large population, and no natural selection. The Hardy-Weinberg Equation is used to predict the frequency of alleles in a population, and it can be used to estimate the carrier frequency of genetic diseases. For example, if the incidence of PKU is one in 10,000 babies, then the carrier frequency in the general population is 1/50. Couples with a previous child with PKU have a 25% chance of having another affected child.
-
This question is part of the following fields:
- Genetics
-
-
Question 16
Incorrect
-
What is the condition that occurs when there is a deletion of the paternal chromosome 15q?
Your Answer: Angelman syndrome
Correct Answer: Prader-Willi syndrome
Explanation:Genetic Conditions and Their Features
Genetic conditions are disorders caused by abnormalities in an individual’s DNA. These conditions can affect various aspects of a person’s health, including physical and intellectual development. Some of the most common genetic conditions and their features are:
– Downs (trisomy 21): Short stature, almond-shaped eyes, low muscle tone, and intellectual disability.
– Angelman syndrome (Happy puppet syndrome): Flapping hand movements, ataxia, severe learning disability, seizures, and sleep problems.
– Prader-Willi: Hyperphagia, excessive weight gain, short stature, and mild learning disability.
– Cri du chat: Characteristic cry, hypotonia, down-turned mouth, and microcephaly.
– Velocardiofacial syndrome (DiGeorge syndrome): Cleft palate, cardiac problems, and learning disabilities.
– Edwards syndrome (trisomy 18): Severe intellectual disability, kidney malformations, and physical abnormalities.
– Lesch-Nyhan syndrome: Self-mutilation, dystonia, and writhing movements.
– Smith-Magenis syndrome: Pronounced self-injurious behavior, self-hugging, and a hoarse voice.
– Fragile X: Elongated face, large ears, hand flapping, and shyness.
– Wolf Hirschhorn syndrome: Mild to severe intellectual disability, seizures, and physical abnormalities.
– Patau syndrome (trisomy 13): Severe intellectual disability, congenital heart malformations, and physical abnormalities.
– Rett syndrome: Regression and loss of skills, hand-wringing movements, and profound learning disability.
– Tuberous sclerosis: Hamartomatous tumors, epilepsy, and behavioral issues.
– Williams syndrome: Elfin-like features, social disinhibition, and advanced verbal skills.
– Rubinstein-Taybi syndrome: Short stature, friendly disposition, and moderate learning disability.
– Klinefelter syndrome: Extra X chromosome, low testosterone, and speech and language issues.
– Jakob’s syndrome: Extra Y chromosome, tall stature, and lower mean intelligence.
– Coffin-Lowry syndrome: Short stature, slanting eyes, and severe learning difficulty.
– Turner syndrome: Short stature, webbed neck, and absent periods.
– Niemann Pick disease (types A and B): Abdominal swelling, cherry red spot, and feeding difficulties.It is important to note that these features may vary widely among individuals with the same genetic condition. Early diagnosis and intervention can help individuals with genetic conditions reach their full potential and improve their quality of life.
-
This question is part of the following fields:
- Genetics
-
-
Question 17
Incorrect
-
What is the more commonly used name for Trisomy 18 syndrome?
Your Answer: Downs syndrome
Correct Answer: Edwards syndrome
Explanation:Genetic Conditions and Their Features
Genetic conditions are disorders caused by abnormalities in an individual’s DNA. These conditions can affect various aspects of a person’s health, including physical and intellectual development. Some of the most common genetic conditions and their features are:
– Downs (trisomy 21): Short stature, almond-shaped eyes, low muscle tone, and intellectual disability.
– Angelman syndrome (Happy puppet syndrome): Flapping hand movements, ataxia, severe learning disability, seizures, and sleep problems.
– Prader-Willi: Hyperphagia, excessive weight gain, short stature, and mild learning disability.
– Cri du chat: Characteristic cry, hypotonia, down-turned mouth, and microcephaly.
– Velocardiofacial syndrome (DiGeorge syndrome): Cleft palate, cardiac problems, and learning disabilities.
– Edwards syndrome (trisomy 18): Severe intellectual disability, kidney malformations, and physical abnormalities.
– Lesch-Nyhan syndrome: Self-mutilation, dystonia, and writhing movements.
– Smith-Magenis syndrome: Pronounced self-injurious behavior, self-hugging, and a hoarse voice.
– Fragile X: Elongated face, large ears, hand flapping, and shyness.
– Wolf Hirschhorn syndrome: Mild to severe intellectual disability, seizures, and physical abnormalities.
– Patau syndrome (trisomy 13): Severe intellectual disability, congenital heart malformations, and physical abnormalities.
– Rett syndrome: Regression and loss of skills, hand-wringing movements, and profound learning disability.
– Tuberous sclerosis: Hamartomatous tumors, epilepsy, and behavioral issues.
– Williams syndrome: Elfin-like features, social disinhibition, and advanced verbal skills.
– Rubinstein-Taybi syndrome: Short stature, friendly disposition, and moderate learning disability.
– Klinefelter syndrome: Extra X chromosome, low testosterone, and speech and language issues.
– Jakob’s syndrome: Extra Y chromosome, tall stature, and lower mean intelligence.
– Coffin-Lowry syndrome: Short stature, slanting eyes, and severe learning difficulty.
– Turner syndrome: Short stature, webbed neck, and absent periods.
– Niemann Pick disease (types A and B): Abdominal swelling, cherry red spot, and feeding difficulties.It is important to note that these features may vary widely among individuals with the same genetic condition. Early diagnosis and intervention can help individuals with genetic conditions reach their full potential and improve their quality of life.
-
This question is part of the following fields:
- Genetics
-
-
Question 18
Incorrect
-
A chromosome that has a very short p arm, making it difficult to observe, is known as:
Your Answer: Submetacentric
Correct Answer: Telocentric
Explanation:Understanding Centromeres
A centromere is a crucial part of DNA that connects two sister chromatids. It plays a vital role in cell division by keeping the sister chromatids aligned and allowing the chromosomes to be lined up during metaphase. The position of the centromere divides the chromosome into two arms, the long (q) and the short (p). Chromosomes are classified based on the position of the centromere. Metacentric chromosomes have arms of roughly equal length, and they can be formed by Robertsonian translocations. Acrocentric chromosomes can also be involved in Robertsonian translocations. Monocentric chromosomes have only one centromere and form a narrow constriction, while holocentric chromosomes have the entire length of the chromosome acting as the centromere. Understanding the role and classification of centromeres is essential in comprehending the process of cell division.
-
This question is part of the following fields:
- Genetics
-
-
Question 19
Correct
-
What is the most probable cause of negative consequences when consuming alcohol?
Your Answer: Possessing very active forms of alcohol dehydrogenase
Explanation:The accumulation of acetaldehyde in the bloodstream is responsible for the negative consequences of alcohol consumption, which can occur when alcohol dehydrogenase is active of aldehyde dehydrogenase is inactive.
Genetics and Alcoholism
Alcoholism tends to run in families, and several studies confirm that biological children of alcoholics are more likely to develop alcoholism even when adopted by parents without the condition. Monozygotic twins have a greater concordance rate for alcoholism than dizygotic twins. Heritability estimates range from 45 to 65 percent for both men and women. While genetic differences affect risk, there is no “gene for alcoholism,” and both environmental and social factors weigh heavily on the outcome.
The genes with the clearest contribution to the risk for alcoholism and alcohol consumption are alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2). The first step in ethanol metabolism is oxidation to acetaldehyde, by ADHs. The second step is metabolism of the acetaldehyde to acetate by ALDHs. Individuals carrying even a single copy of the ALDH2*504K display the “Asian flushing reaction” when they consume even small amounts of alcohol. There is one significant genetic polymorphism of the ALDH2 gene, resulting in allelic variants ALDH2*1 and ALDH2*2, which is virtually inactive. ALDH2*2 is present in about 50 percent of the Taiwanese, Han Chinese, and Japanese populations. It is extremely rare outside Asia. Nearly no individuals of European of African descent carry this allele. ALDH2*504K has repeatedly been demonstrated to have a protective effect against alcohol use disorders.
The three different class I gene loci, ADH1A (alpha), ADH1B (beta), and ADH1C (gamma) are situated close to each other in the region 4q2123. The alleles ADH1C*1 and ADH1B*2 code for fast metabolism of alcohol. The ADH1B*1 slow allele is very common among Caucasians, with approximately 95 percent having the homozygous ADH1B*1/1 genotype and 5 percent having the heterozygous ADH1B*1/2 genotype. The ADH1B*2 allele is the most common allele in Asian populations. In African populations, the ADH1B*1 allele is the most common.
-
This question is part of the following fields:
- Genetics
-
-
Question 20
Incorrect
-
Which of the following is the most commonly associated condition with Velo-cardio-facial syndrome?
Your Answer: Anxiety
Correct Answer: Psychosis
Explanation:Psychosis is linked to Velo-cardio-facial syndrome.
Velo-Cardio-Facial Syndrome and Psychiatric Disorders
Velo-cardio-facial syndrome (VCFS) is a genetic disorder that is characterized by distinct physical features, congenital heart disease, and learning disabilities. It is caused by small deletions in chromosome 22q11. There have been numerous studies that suggest a link between VCFS and psychiatric disorders.
One of the strongest associations is with psychotic illnesses, such as schizophrenia. This has led researchers to use VCFS as a model for understanding the genetics and pathogenesis of schizophrenia. VCFS provides a unique opportunity to study the genetic and environmental factors that contribute to the development of psychiatric disorders.
Overall, the link between VCFS and psychiatric disorders highlights the importance of understanding the genetic and environmental factors that contribute to mental illness. By studying VCFS, researchers can gain insight into the underlying mechanisms of psychiatric disorders and develop new treatments and interventions.
-
This question is part of the following fields:
- Genetics
-
-
Question 21
Incorrect
-
What is a true statement about Prader-Willi syndrome?
Your Answer: It results from trisomy 12
Correct Answer: Short stature is characteristic
Explanation:Prader-Willi Syndrome: A Genetic Disorder with Unique Characteristics
Prader-Willi Syndrome is a genetic disorder that occurs when there is a deletion of genetic material from the paternal chromosome 15. This condition is a classic example of imprinting, where the expression of certain genes is dependent on whether they are inherited from the mother of father. The syndrome is characterized by several unique features, including hyperphagia (excessive eating) and obesity, short stature, delayed puberty, hypogonadism, infertility, learning difficulties, and compulsive behavior such as skin picking.
-
This question is part of the following fields:
- Genetics
-
-
Question 22
Incorrect
-
Which of the following conditions is an example of the principle of locus heterogeneity?
Your Answer: Angelman Syndrome
Correct Answer: Alzheimer's
Explanation:Understanding Locus Heterogeneity in Genetic Disorders
Locus heterogeneity is a term used to describe a genetic disorder of trait that is caused by mutations in genes located at different chromosomal loci. This means that multiple genes can contribute to the development of the same disorder of trait. For instance, Alzheimer’s disease is a classic example of locus heterogeneity. The condition can be caused by mutations in three different genes: presenilin 1, presenilin 2, and APP.
The concept of locus heterogeneity is important in genetics because it highlights the complexity of genetic disorders. It means that a single genetic test may not be sufficient to diagnose a particular condition, as mutations in different genes can produce similar symptoms. Therefore, a comprehensive genetic analysis that examines multiple genes and loci may be necessary to accurately diagnose and treat a patient.
In summary, locus heterogeneity is a common phenomenon in genetic disorders, where mutations in different genes can lead to the same condition. Understanding this concept is crucial for accurate diagnosis and treatment of genetic disorders.
-
This question is part of the following fields:
- Genetics
-
-
Question 23
Incorrect
-
What is the essential enzyme involved in the process of transcription?
Your Answer: Helicase
Correct Answer: Polymerase
Explanation:Enzymes known as RNA polymerases are responsible for transcribing RNA from DNA. The role of RNA is crucial in the process of protein synthesis. Messenger RNA, a specific type of RNA, carries genetic information from DNA to ribosomes. Ribosomes are composed of ribosomal RNAs and proteins, and they function as a molecular apparatus that can interpret messenger RNAs and convert the information they contain into proteins.
Genomics: Understanding DNA, RNA, Transcription, and Translation
Deoxyribonucleic acid (DNA) is a molecule composed of two chains that coil around each other to form a double helix. DNA is organised into chromosomes, and each chromosome is made up of DNA coiled around proteins called histones. RNA, on the other hand, is made from a long chain of nucleotide units and is usually single-stranded. RNA is transcribed from DNA by enzymes called RNA polymerases and is central to protein synthesis.
Transcription is the synthesis of RNA from a DNA template, and it consists of three main steps: initiation, elongation, and termination. RNA polymerase binds at a sequence of DNA called the promoter, and the transcriptome is the collection of RNA molecules that results from transcription. Translation, on the other hand, refers to the synthesis of polypeptides (proteins) from mRNA. Translation takes place on ribosomes in the cell cytoplasm, where mRNA is read and translated into the string of amino acid chains that make up the synthesized protein.
The process of translation involves messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). Transfer RNAs, of tRNAs, connect mRNA codons to the amino acids they encode, while ribosomes are the structures where polypeptides (proteins) are built. Like transcription, translation also consists of three stages: initiation, elongation, and termination. In initiation, the ribosome assembles around the mRNA to be read and the first tRNA carrying the amino acid methionine. In elongation, the amino acid chain gets longer, and in termination, the finished polypeptide chain is released.
-
This question is part of the following fields:
- Genetics
-
-
Question 24
Correct
-
On which chromosome are the DYX1 loci located, as identified by genetic studies related to dyslexia?
Your Answer: Chromosome 15
Explanation:Genetic Basis of Dyslexia
Dyslexia is a learning disorder that has a significant genetic component, with heritability estimated to be between 54% and 84%. Recent studies have identified nine specific genetic loci associated with dyslexia, labeled as DYX1 to DYX9. These loci are located on various chromosomes, with DYX1 on chromosome 15 at location 15q21.3, DYX2 and DYX4 on chromosome 6, DYX3 on chromosome 2, DYX5 on chromosome 3, DYX6 on chromosome 18, DYX7 on chromosome 11, DYX8 on chromosome 1, and DYX9 on Xq27.3. These findings provide important insights into the genetic basis of dyslexia and may lead to improved diagnosis and treatment options in the future.
-
This question is part of the following fields:
- Genetics
-
-
Question 25
Incorrect
-
Which statement accurately describes aneuploidy?
Your Answer: All those affected with Klinefelter's are infertile
Correct Answer: Only a minority of those with XYY syndrome have an intellectual disability
Explanation:Aneuploidy: Abnormal Chromosome Numbers
Aneuploidy refers to the presence of an abnormal number of chromosomes, which can result from errors during meiosis. Typically, human cells have 23 pairs of chromosomes, but aneuploidy can lead to extra of missing chromosomes. Trisomies, which involve the presence of an additional chromosome, are the most common aneuploidies in humans. However, most trisomies are not compatible with life, and only trisomy 21 (Down’s syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome) survive to birth. Aneuploidy can result in imbalances in gene expression, which can lead to a range of symptoms and developmental issues.
Compared to autosomal trisomies, humans are more able to tolerate extra sex chromosomes. Klinefelter’s syndrome, which involves the presence of an extra X chromosome, is the most common sex chromosome aneuploidy. Individuals with Klinefelter’s and XYY often remain undiagnosed, but they may experience reduced sexual development and fertility. Monosomies, which involve the loss of a chromosome, are rare in humans. The only viable human monosomy involves the X chromosome and results in Turner’s syndrome. Turner’s females display a wide range of symptoms, including infertility and impaired sexual development.
The frequency and severity of aneuploidies vary widely. Down’s syndrome is the most common viable autosomal trisomy, affecting 1 in 800 births. Klinefelter’s syndrome affects 1-2 in 1000 male births, while XYY syndrome affects 1 in 1000 male births and Triple X syndrome affects 1 in 1000 births. Turner syndrome is less common, affecting 1 in 5000 female births. Edwards syndrome and Patau syndrome are rare, affecting 1 in 6000 and 1 in 10,000 births, respectively. Understanding the genetic basis and consequences of aneuploidy is important for diagnosis, treatment, and genetic counseling.
-
This question is part of the following fields:
- Genetics
-
-
Question 26
Incorrect
-
What is a true statement about XYY syndrome?
Your Answer: It is also known as Klinefelter's syndrome
Correct Answer: It is associated with an increased risk of learning disability
Explanation:XYY Syndrome
XYY Syndrome, also known as Jacobs’ Syndrome of super-males, is a genetic condition where males have an extra Y chromosome, resulting in a 47, XYY karyotype. In some cases, mosaicism may occur, resulting in a 47,XYY/46,XY karyotype. The error leading to the 47,XYY genotype occurs during spermatogenesis of post-zygotic mitosis. The prevalence of XYY Syndrome is as high as 1:1000 male live births, but many cases go unidentified as they are not necessarily associated with physical of cognitive impairments. The most common features are high stature and a strong build, and fertility and sexual development are usually unaffected. In the past, XYY Syndrome was linked to aggressiveness and deviance, but this is likely due to intermediate factors such as reduced IQ and social deprivation. XYY Syndrome is best thought of as a risk factor rather than a cause. There is an increased risk of developmental disorders such as learning difficulties, ASD, ADHD, and emotional problems.
-
This question is part of the following fields:
- Genetics
-
-
Question 27
Incorrect
-
Which of the following is associated with dynamic mutations?
Your Answer: Rett syndrome
Correct Answer: Fragile X
Explanation:Trinucleotide Repeat Disorders: Understanding the Genetic Basis
Trinucleotide repeat disorders are genetic conditions that arise due to the abnormal presence of an expanded sequence of trinucleotide repeats. These disorders are characterized by the phenomenon of anticipation, which refers to the amplification of the number of repeats over successive generations. This leads to an earlier onset and often a more severe form of the disease.
The table below lists the trinucleotide repeat disorders and the specific repeat sequences involved in each condition:
Condition Repeat Sequence Involved
Fragile X Syndrome CGG
Myotonic Dystrophy CTG
Huntington’s Disease CAG
Friedreich’s Ataxia GAA
Spinocerebellar Ataxia CAGThe mutations responsible for trinucleotide repeat disorders are referred to as ‘dynamic’ mutations. This is because the number of repeats can change over time, leading to a range of clinical presentations. Understanding the genetic basis of these disorders is crucial for accurate diagnosis, genetic counseling, and the development of effective treatments.
-
This question is part of the following fields:
- Genetics
-
-
Question 28
Incorrect
-
Select the correct order of the phases in the cell cycle:
Your Answer: S phase, G2, G1, mitosis
Correct Answer: G1, S phase, G2, mitosis
Explanation:Cytokinesis: The Final Stage of Cell Division
Cytokinesis is the final stage of cell division, where the cell splits into two daughter cells, each with a nucleus. This process is essential for the growth and repair of tissues in multicellular organisms. In mitosis, cytokinesis occurs after telophase, while in meiosis, it occurs after telophase I and telophase II.
During cytokinesis, a contractile ring made of actin and myosin filaments forms around the cell’s equator, constricting it like a belt. This ring gradually tightens, pulling the cell membrane inward and creating a furrow that deepens until it reaches the center of the cell. Eventually, the furrow meets in the middle, dividing the cell into two daughter cells.
In animal cells, cytokinesis is achieved by the formation of a cleavage furrow, while in plant cells, a cell plate forms between the two daughter nuclei, which eventually develops into a new cell wall. The timing and mechanism of cytokinesis are tightly regulated by a complex network of proteins and signaling pathways, ensuring that each daughter cell receives the correct amount of cytoplasm and organelles.
Overall, cytokinesis is a crucial step in the cell cycle, ensuring that genetic material is equally distributed between daughter cells and allowing for the growth and development of multicellular organisms.
-
This question is part of the following fields:
- Genetics
-
-
Question 29
Correct
-
What is the pattern of inheritance where female offspring of affected fathers do not exhibit symptoms of carry the genetic mutation?
Your Answer: Y-linked
Explanation:Inheritance Patterns:
Autosomal Dominant Conditions:
– Can be transmitted from one generation to the next (vertical transmission) through all forms of transmission observed (male to male, male to female, female to female).
– Males and females are affected in equal proportions.
– Usually, one parent is an affected heterozygote and the other is an unaffected homozygote.
– If only one parent is affected, there is a 50% chance that a child will inherit the mutated gene.Autosomal Recessive Conditions:
– Males and females are affected in equal proportions.
– Two copies of the gene must be mutated for a person to be affected.
– Both parents are usually unaffected heterozygotes.
– Two unaffected people who each carry one copy of the mutated gene have a 25% chance with each pregnancy of having a child affected by the disorder.X-linked Dominant Conditions:
– Males and females are both affected, with males typically being more severely affected than females.
– The sons of a man with an X-linked dominant disorder will all be unaffected.
– A woman with an X-linked dominant disorder has a 50% chance of having an affected fetus.X-linked Recessive Conditions:
– Males are more frequently affected than females.
– Transmitted through carrier females to their sons (knights move pattern).
– Affected males cannot pass the condition onto their sons.
– A woman who is a carrier of an X-linked recessive disorder has a 50% chance of having sons who are affected and a 50% chance of having daughters who are carriers.Y-linked Conditions:
– Every son of an affected father will be affected.
– Female offspring of affected fathers are never affected.Mitochondrial Inheritance:
– Mitochondria are inherited only in the maternal ova and not in sperm.
– Males and females are affected, but always being maternally inherited.
– An affected male does not pass on his mitochondria to his children, so all his children will be unaffected. -
This question is part of the following fields:
- Genetics
-
-
Question 30
Incorrect
-
What is the term used to describe genes that are located close to each other on a chromosome and are unlikely to be separated by crossing over?
Your Answer:
Correct Answer: Linked
Explanation:Linkage and LOD Scores in Genetics
In genetics, when genes are located close to each other on a chromosome, they tend to be inherited together and are referred to as linked genes. Conversely, genes that are far apart of located on different chromosomes are inherited independently and are said to follow independent assortment. To determine the relative distance between two genes, scientists can analyze the offspring of an organism that displays two strongly linked traits and calculate the percentage of offspring where the traits do not co-segregate.
To determine if there is evidence for linkage between two genes, scientists use a statistical method called the LOD score (logarithm of the odds). A LOD score of >3 is considered significant evidence for linkage, while a LOD score of <-2 excludes linkage. The LOD score is calculated by comparing the likelihood of the observed data under the assumption of linkage to the likelihood of the data under the assumption of independent assortment. The LOD score provides a measure of the strength of evidence for linkage between two genes and is widely used in genetic research.
-
This question is part of the following fields:
- Genetics
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)