-
Question 1
Correct
-
Which condition is inherited in an autosomal dominant pattern?
Your Answer: Huntington's disease
Explanation:Inheritance Patterns and Examples
Autosomal Dominant:
Neurofibromatosis type 1 and 2, tuberous sclerosis, achondroplasia, Huntington disease, and Noonan’s syndrome are all examples of conditions that follow an autosomal dominant inheritance pattern. This means that only one copy of the mutated gene is needed to cause the condition.Autosomal Recessive:
Phenylketonuria, homocystinuria, Hurler’s syndrome, galactosaemia, Tay-Sach’s disease, Friedreich’s ataxia, Wilson’s disease, and cystic fibrosis are all examples of conditions that follow an autosomal recessive inheritance pattern. This means that two copies of the mutated gene are needed to cause the condition.X-Linked Dominant:
Vitamin D resistant rickets and Rett syndrome are examples of conditions that follow an X-linked dominant inheritance pattern. This means that the mutated gene is located on the X chromosome and only one copy of the gene is needed to cause the condition.X-Linked Recessive:
Cerebellar ataxia, Hunter’s syndrome, and Lesch-Nyhan are examples of conditions that follow an X-linked recessive inheritance pattern. This means that the mutated gene is located on the X chromosome and two copies of the gene are needed to cause the condition.Mitochondrial:
Leber’s hereditary optic neuropathy and Kearns-Sayre syndrome are examples of conditions that follow a mitochondrial inheritance pattern. This means that the mutated gene is located in the mitochondria and is passed down from the mother to her offspring. -
This question is part of the following fields:
- Genetics
-
-
Question 2
Incorrect
-
What is the most frequently occurring genetic mutation in individuals with early onset familial Alzheimer's disease?
Your Answer: APOE2
Correct Answer: PSEN1
Explanation:Genetics plays a role in the development of Alzheimer’s disease, with different genes being associated with early onset and late onset cases. Early onset Alzheimer’s, which is rare, is linked to three genes: amyloid precursor protein (APP), presenilin one (PSEN-1), and presenilin two (PSEN-2). The APP gene, located on chromosome 21, produces a protein that is a precursor to amyloid. The presenilins are enzymes that cleave APP to produce amyloid beta fragments, and alterations in the ratios of these fragments can lead to plaque formation. Late onset Alzheimer’s is associated with the apolipoprotein E (APOE) gene on chromosome 19, with the E4 variant increasing the risk of developing the disease. People with Down’s syndrome are also at high risk of developing Alzheimer’s due to inheriting an extra copy of the APP gene.
-
This question is part of the following fields:
- Genetics
-
-
Question 3
Incorrect
-
Which of the following is associated with dynamic mutations?
Your Answer: Rett syndrome
Correct Answer: Fragile X
Explanation:Trinucleotide Repeat Disorders: Understanding the Genetic Basis
Trinucleotide repeat disorders are genetic conditions that arise due to the abnormal presence of an expanded sequence of trinucleotide repeats. These disorders are characterized by the phenomenon of anticipation, which refers to the amplification of the number of repeats over successive generations. This leads to an earlier onset and often a more severe form of the disease.
The table below lists the trinucleotide repeat disorders and the specific repeat sequences involved in each condition:
Condition Repeat Sequence Involved
Fragile X Syndrome CGG
Myotonic Dystrophy CTG
Huntington’s Disease CAG
Friedreich’s Ataxia GAA
Spinocerebellar Ataxia CAGThe mutations responsible for trinucleotide repeat disorders are referred to as ‘dynamic’ mutations. This is because the number of repeats can change over time, leading to a range of clinical presentations. Understanding the genetic basis of these disorders is crucial for accurate diagnosis, genetic counseling, and the development of effective treatments.
-
This question is part of the following fields:
- Genetics
-
-
Question 4
Incorrect
-
Can you provide an accurate statement about the use of pairwise and probandwise concordance rates in twin studies?
Your Answer: Pairwise concordance rates do not apply to monozygotic twin pairs
Correct Answer: Probandwise concordance rates are preferred for genetic counselling
Explanation:Both MZ and DZ twins can be analyzed using pairwise and probandwise rates, but probandwise rates are more beneficial in genetic counseling scenarios as they provide information specific to individuals.
Concordance rates are used in twin studies to investigate the genetic contribution to a trait of condition. Concordance refers to the presence of the same trait of condition in both members of a twin pair. There are two main methods of calculating twin concordance rates: pairwise and probandwise. These methods produce different results and are calculated differently. The probandwise method is generally preferred as it provides more meaningful information in a genetic counseling setting.
The table below shows an example of a population of 100,000 MZ twin pairs, and the pairwise and probandwise concordance rates calculated from this population. Pairwise concordance is the probability that both twins in a pair are affected by the trait of condition. Probandwise concordance is the probability that a twin is affected given that their co-twin is affected. Both methods are conditional probabilities, but pairwise applies to twin pairs, while probandwise applies to individual twins. This is why probandwise is preferred, as it helps predict the risk at the individual level.
-
This question is part of the following fields:
- Genetics
-
-
Question 5
Incorrect
-
Which of the following conditions is an example of the principle of locus heterogeneity?
Your Answer: Huntington's Disease
Correct Answer: Alzheimer's
Explanation:Understanding Locus Heterogeneity in Genetic Disorders
Locus heterogeneity is a term used to describe a genetic disorder of trait that is caused by mutations in genes located at different chromosomal loci. This means that multiple genes can contribute to the development of the same disorder of trait. For instance, Alzheimer’s disease is a classic example of locus heterogeneity. The condition can be caused by mutations in three different genes: presenilin 1, presenilin 2, and APP.
The concept of locus heterogeneity is important in genetics because it highlights the complexity of genetic disorders. It means that a single genetic test may not be sufficient to diagnose a particular condition, as mutations in different genes can produce similar symptoms. Therefore, a comprehensive genetic analysis that examines multiple genes and loci may be necessary to accurately diagnose and treat a patient.
In summary, locus heterogeneity is a common phenomenon in genetic disorders, where mutations in different genes can lead to the same condition. Understanding this concept is crucial for accurate diagnosis and treatment of genetic disorders.
-
This question is part of the following fields:
- Genetics
-
-
Question 6
Incorrect
-
What gene is linked to frontotemporal dementia with parkinsonism?
Your Answer: PSEN-1
Correct Answer: MAPT
Explanation:FTDP-17 is a type of frontotemporal dementia that results from a mutation in the MAPT gene found on chromosome 17. The MAPT gene is responsible for producing Tau protein.
Genes Associated with Dementia
Dementia is a complex disorder that can be caused by various genetic and environmental factors. Several genes have been implicated in different forms of dementia. For instance, familial Alzheimer’s disease, which represents less than 1-6% of all Alzheimer’s cases, is associated with mutations in PSEN1, PSEN2, APP, and ApoE genes. These mutations are inherited in an autosomal dominant pattern. On the other hand, late-onset Alzheimer’s disease is a genetic risk factor associated with the ApoE gene, particularly the APOE4 allele. However, inheriting this allele does not necessarily mean that a person will develop Alzheimer’s.
Other forms of dementia, such as familial frontotemporal dementia, Huntington’s disease, CADASIL, and dementia with Lewy bodies, are also associated with specific genes. For example, C9orf72 is the most common mutation associated with familial frontotemporal dementia, while Huntington’s disease is caused by mutations in the HTT gene. CADASIL is associated with mutations in the Notch3 gene, while dementia with Lewy bodies is associated with the APOE, GBA, and SNCA genes.
In summary, understanding the genetic basis of dementia is crucial for developing effective treatments and preventive measures. However, it is important to note that genetics is only one of the many factors that contribute to the development of dementia. Environmental factors, lifestyle choices, and other health conditions also play a significant role.
-
This question is part of the following fields:
- Genetics
-
-
Question 7
Incorrect
-
What is the primary constituent of the neurofibrillary tangles observed in Alzheimer's disease?
Your Answer: Amyloid
Correct Answer: Tau
Explanation:Tau and Tauopathies
Tau proteins are essential for maintaining the stability of microtubules in neurons. Microtubules provide structural support to the cell and facilitate the transport of molecules within the cell. Tau proteins are predominantly found in the axons of neurons and are absent in dendrites. The gene that codes for tau protein is located on chromosome 17.
When tau proteins become hyperphosphorylated, they clump together, forming neurofibrillary tangles. This process leads to the disintegration of cells, which is a hallmark of several neurodegenerative disorders collectively known as tauopathies.
The major tauopathies include Alzheimer’s disease, Pick’s disease (frontotemporal dementia), progressive supranuclear palsy, and corticobasal degeneration. These disorders are characterized by the accumulation of tau protein in the brain, leading to the degeneration of neurons and cognitive decline. Understanding the role of tau proteins in these disorders is crucial for developing effective treatments for these devastating diseases.
-
This question is part of the following fields:
- Genetics
-
-
Question 8
Correct
-
Which stage of the cell cycle is involved in the process of cell division?
Your Answer: M Phase
Explanation:The M phase is where cell division takes place through mitosis.
Cytokinesis: The Final Stage of Cell Division
Cytokinesis is the final stage of cell division, where the cell splits into two daughter cells, each with a nucleus. This process is essential for the growth and repair of tissues in multicellular organisms. In mitosis, cytokinesis occurs after telophase, while in meiosis, it occurs after telophase I and telophase II.
During cytokinesis, a contractile ring made of actin and myosin filaments forms around the cell’s equator, constricting it like a belt. This ring gradually tightens, pulling the cell membrane inward and creating a furrow that deepens until it reaches the center of the cell. Eventually, the furrow meets in the middle, dividing the cell into two daughter cells.
In animal cells, cytokinesis is achieved by the formation of a cleavage furrow, while in plant cells, a cell plate forms between the two daughter nuclei, which eventually develops into a new cell wall. The timing and mechanism of cytokinesis are tightly regulated by a complex network of proteins and signaling pathways, ensuring that each daughter cell receives the correct amount of cytoplasm and organelles.
Overall, cytokinesis is a crucial step in the cell cycle, ensuring that genetic material is equally distributed between daughter cells and allowing for the growth and development of multicellular organisms.
-
This question is part of the following fields:
- Genetics
-
-
Question 9
Correct
-
What is the accuracy of mitosis in cell division?
Your Answer: It is part of the somatic cell cycle
Explanation:Mitosis is a process that occurs in somatic cells during the cell cycle and involves four stages: prophase, metaphase, anaphase, and telophase. Prior to mitosis, during the interphase, DNA replication occurs in a separate stage called synthesis of S phase. Mitosis results in the division of a cell that has already replicated its chromosomes into two daughter cells that are genetically identical to the original cell.
On the other hand, meiosis is a process that occurs in the testes and ovaries and results in the formation of haploid cells, which contain 22 single autosomes and 1 sex chromosome, and are used to form gametes. During meiosis, recombination of cross-over occurs, where matching portions of chromosomes are exchanged to ensure genetic variation in the production of gametes.
-
This question is part of the following fields:
- Genetics
-
-
Question 10
Correct
-
A mutation affecting the transcriptional activity of a new gene associated with Alzheimer's disease is reported. The mutation is most likely to be in which of the following?
Your Answer: Promoter region
Explanation:Genomics: Understanding DNA, RNA, Transcription, and Translation
Deoxyribonucleic acid (DNA) is a molecule composed of two chains that coil around each other to form a double helix. DNA is organised into chromosomes, and each chromosome is made up of DNA coiled around proteins called histones. RNA, on the other hand, is made from a long chain of nucleotide units and is usually single-stranded. RNA is transcribed from DNA by enzymes called RNA polymerases and is central to protein synthesis.
Transcription is the synthesis of RNA from a DNA template, and it consists of three main steps: initiation, elongation, and termination. RNA polymerase binds at a sequence of DNA called the promoter, and the transcriptome is the collection of RNA molecules that results from transcription. Translation, on the other hand, refers to the synthesis of polypeptides (proteins) from mRNA. Translation takes place on ribosomes in the cell cytoplasm, where mRNA is read and translated into the string of amino acid chains that make up the synthesized protein.
The process of translation involves messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). Transfer RNAs, of tRNAs, connect mRNA codons to the amino acids they encode, while ribosomes are the structures where polypeptides (proteins) are built. Like transcription, translation also consists of three stages: initiation, elongation, and termination. In initiation, the ribosome assembles around the mRNA to be read and the first tRNA carrying the amino acid methionine. In elongation, the amino acid chain gets longer, and in termination, the finished polypeptide chain is released.
-
This question is part of the following fields:
- Genetics
-
-
Question 11
Correct
-
Can you identify a condition that falls under the category of tauopathy?
Your Answer: Pick's disease
Explanation:Tau and Tauopathies
Tau proteins are essential for maintaining the stability of microtubules in neurons. Microtubules provide structural support to the cell and facilitate the transport of molecules within the cell. Tau proteins are predominantly found in the axons of neurons and are absent in dendrites. The gene that codes for tau protein is located on chromosome 17.
When tau proteins become hyperphosphorylated, they clump together, forming neurofibrillary tangles. This process leads to the disintegration of cells, which is a hallmark of several neurodegenerative disorders collectively known as tauopathies.
The major tauopathies include Alzheimer’s disease, Pick’s disease (frontotemporal dementia), progressive supranuclear palsy, and corticobasal degeneration. These disorders are characterized by the accumulation of tau protein in the brain, leading to the degeneration of neurons and cognitive decline. Understanding the role of tau proteins in these disorders is crucial for developing effective treatments for these devastating diseases.
-
This question is part of the following fields:
- Genetics
-
-
Question 12
Incorrect
-
A 7-year-old girl has a long, narrow face with large ears, a prominent jaw and forehead, and flexible fingers. She has difficulty maintaining attention and has been placed in a special school due to learning difficulties. What gene mutation is most likely responsible for this presentation?
Your Answer: GCC repeats
Correct Answer: CGG triplet repeats
Explanation:Fragile X syndrome is a genetic disorder caused by an excessive number of CGG codon repeats on the X chromosomes. While a normal range is 6-53 repeats, pathogenic conditions result in over 200+ repeats. Other repeat disorders include CAG repeats causing Huntington’s disease, CTG repeats causing myotonic dystrophy and spinocerebellar ataxia type 8, GAA repeats causing Friedreich’s ataxia, and GCC repeats causing learning difficulties in fragile XE.
-
This question is part of the following fields:
- Genetics
-
-
Question 13
Incorrect
-
What is the correct statement about the recombination fraction?
Your Answer: It is the fraction of the time that errors occur in crossing over
Correct Answer: It is a measure of the distance between two loci
Explanation:Recombination Fraction: A Measure of Distance Between Loci
When two loci are located on different chromosomes, they segregate independently during meiosis. However, if they are on the same chromosome, they tend to segregate together, unless crossing over occurs. Crossing over is a process in meiosis where two homologous chromosomes exchange genetic material, resulting in the shuffling of alleles. The likelihood of crossing over between two loci on a chromosome decreases as their distance from each other increases.
Hence, blocks of alleles on a chromosome tend to be transmitted together through generations, forming a haplotype. The recombination fraction is a measure of the distance between two loci on a chromosome. The closer the loci are, the lower the recombination fraction, and the more likely they are to be transmitted together. Conversely, the further apart the loci are, the higher the recombination fraction, and the more likely they are to be separated by crossing over. The recombination fraction can range from 0% if the loci are very close to 50% if they are on different chromosomes.
-
This question is part of the following fields:
- Genetics
-
-
Question 14
Correct
-
What is the process that involves the transfer of amino acids to the ribosome during translation?
Your Answer: tRNA
Explanation:Genomics: Understanding DNA, RNA, Transcription, and Translation
Deoxyribonucleic acid (DNA) is a molecule composed of two chains that coil around each other to form a double helix. DNA is organised into chromosomes, and each chromosome is made up of DNA coiled around proteins called histones. RNA, on the other hand, is made from a long chain of nucleotide units and is usually single-stranded. RNA is transcribed from DNA by enzymes called RNA polymerases and is central to protein synthesis.
Transcription is the synthesis of RNA from a DNA template, and it consists of three main steps: initiation, elongation, and termination. RNA polymerase binds at a sequence of DNA called the promoter, and the transcriptome is the collection of RNA molecules that results from transcription. Translation, on the other hand, refers to the synthesis of polypeptides (proteins) from mRNA. Translation takes place on ribosomes in the cell cytoplasm, where mRNA is read and translated into the string of amino acid chains that make up the synthesized protein.
The process of translation involves messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). Transfer RNAs, of tRNAs, connect mRNA codons to the amino acids they encode, while ribosomes are the structures where polypeptides (proteins) are built. Like transcription, translation also consists of three stages: initiation, elongation, and termination. In initiation, the ribosome assembles around the mRNA to be read and the first tRNA carrying the amino acid methionine. In elongation, the amino acid chain gets longer, and in termination, the finished polypeptide chain is released.
-
This question is part of the following fields:
- Genetics
-
-
Question 15
Incorrect
-
How can a group of genetic defects causing a single condition be described?
Your Answer: Full penetrance
Correct Answer: Heterogeneity
Explanation:Pleiotropy refers to a genetic phenomenon where a single gene has an impact on multiple observable traits. This occurs because the gene produces a product that is utilized by various cells. An instance of pleiotropy is the human condition known as PKU (phenylketonuria).
Understanding Heterogeneity in Genetic Diseases
Heterogeneity is a term used to describe the presence of different genetic defects that can cause the same disease. This phenomenon is commonly observed in genetic disorders, where multiple mutations can lead to the same clinical presentation. For instance, the ABO blood group system is an example of heterogeneity, where different combinations of alleles can result in the same blood type.
Understanding heterogeneity is crucial for accurate diagnosis and treatment of genetic diseases. Identifying the specific genetic defect responsible for a particular disease can help tailor therapies and predict disease progression. However, the presence of heterogeneity can also complicate diagnosis and treatment, as different mutations may require different approaches.
Overall, heterogeneity highlights the complexity of genetic diseases and underscores the need for personalized medicine approaches that take into account individual genetic variations.
-
This question is part of the following fields:
- Genetics
-
-
Question 16
Correct
-
One statement that is false regarding the genetics of ADHD is: ADHD is caused by a single gene mutation.
Your Answer: ADHD has been associated with the neuregulin 1 gene
Explanation:While ADHD has been linked to various genes, neuregulin 1 is not among them. However, it has been suggested to play a role in schizophrenia.
ADHD and Genetics
Decades of research have shown that genetics play a crucial role in the development of attention deficit hyperactivity disorder (ADHD) and its comorbidity with other disorders. However, twin estimates of heritability being less than 100% suggest that environmental factors also play a role. Parents and siblings of a child with ADHD are more likely to have ADHD themselves, but the way ADHD is inherited is complex and not related to a single genetic fault. The heritability of ADHD is around 74%, and longitudinal studies show that two-thirds of ADHD youth will continue to have impairing symptoms of ADHD in adulthood. Adoption studies suggest that the familial factors of ADHD are attributable to genetic factors rather than shared environmental factors. The heritability is similar in males and females, and studies suggest that the diagnosis of ADHD is the extreme of a continuous distribution of ADHD symptoms in the population. Several candidate genes, including DAT1, DRD4, DRD5, 5 HTT, HTR1B, and SNAP25, have been identified as significantly associated with ADHD.
Source: Faraone (2019) Genetics of attention deficit hyperactivity disorder. Molecular Psychiatry volume 24, pages 562–575 (2019).
-
This question is part of the following fields:
- Genetics
-
-
Question 17
Correct
-
Which condition is characterized by microcephaly?
Your Answer: Fetal alcohol syndrome
Explanation:Microcephaly is a characteristic of fetal alcohol syndrome, while macrocephaly is associated with all the other options except for Asperger’s, which is not typically linked to any abnormality in head size.
Microcephaly: A Condition of Small Head Size
Microcephaly is a condition characterized by a small head size. It can be a feature of various conditions, including fetal alcohol syndrome, Down’s syndrome, Edward’s syndrome, Patau syndrome, Angelman syndrome, De Lange syndrome, Prader-Willi syndrome, and Cri-du-chat syndrome. Each of these conditions has its own unique set of symptoms and causes, but they all share the common feature of microcephaly. This condition can have a range of effects on a person’s development, including intellectual disability, seizures, and motor problems. Early diagnosis and intervention can help manage the symptoms and improve outcomes for individuals with microcephaly.
-
This question is part of the following fields:
- Genetics
-
-
Question 18
Incorrect
-
Which gene is not considered a candidate gene for schizophrenia?
Your Answer: DRD2
Correct Answer: APOE
Explanation:Schizophrenia is a complex disorder that is associated with multiple candidate genes. No single gene has been identified as the sole cause of schizophrenia, and it is believed that the more genes involved, the greater the risk. Some of the important candidate genes for schizophrenia include DTNBP1, COMT, NRG1, G72, RGS4, DAOA, DISC1, and DRD2. Among these, neuregulin, dysbindin, and DISC1 are the most replicated and plausible genes, with COMT being the strongest candidate gene due to its role in dopamine metabolism. Low activity of the COMT gene has been associated with obsessive-compulsive disorder and schizophrenia. Neuregulin 1 is a growth factor that stimulates neuron development and differentiation, and increased neuregulin signaling in schizophrenia may suppress the NMDA receptor, leading to lowered glutamate levels. Dysbindin is involved in the biogenesis of lysosome-related organelles, and its expression is decreased in schizophrenia. DISC1 encodes a multifunctional protein that influences neuronal development and adult brain function, and it is disrupted in schizophrenia. It is located at the breakpoint of a balanced translocation identified in a large Scottish family with schizophrenia, schizoaffective disorder, and other major mental illnesses.
-
This question is part of the following fields:
- Genetics
-
-
Question 19
Incorrect
-
What gene is thought to increase the likelihood of individuals developing frontotemporal dementia?
Your Answer: Amyloid precursor protein
Correct Answer: Progranulin
Explanation:Genes Associated with Dementia
Dementia is a complex disorder that can be caused by various genetic and environmental factors. Several genes have been implicated in different forms of dementia. For instance, familial Alzheimer’s disease, which represents less than 1-6% of all Alzheimer’s cases, is associated with mutations in PSEN1, PSEN2, APP, and ApoE genes. These mutations are inherited in an autosomal dominant pattern. On the other hand, late-onset Alzheimer’s disease is a genetic risk factor associated with the ApoE gene, particularly the APOE4 allele. However, inheriting this allele does not necessarily mean that a person will develop Alzheimer’s.
Other forms of dementia, such as familial frontotemporal dementia, Huntington’s disease, CADASIL, and dementia with Lewy bodies, are also associated with specific genes. For example, C9orf72 is the most common mutation associated with familial frontotemporal dementia, while Huntington’s disease is caused by mutations in the HTT gene. CADASIL is associated with mutations in the Notch3 gene, while dementia with Lewy bodies is associated with the APOE, GBA, and SNCA genes.
In summary, understanding the genetic basis of dementia is crucial for developing effective treatments and preventive measures. However, it is important to note that genetics is only one of the many factors that contribute to the development of dementia. Environmental factors, lifestyle choices, and other health conditions also play a significant role.
-
This question is part of the following fields:
- Genetics
-
-
Question 20
Incorrect
-
On which chromosome is the gene associated with Huntington's disease located?
Your Answer: 12
Correct Answer: 4
Explanation:Huntington’s Disease: Genetics and Pathology
Huntington’s disease is a genetic disorder that follows an autosomal dominant pattern of inheritance. It is caused by a mutation in the Huntington gene, which is located on chromosome 4. The mutation involves an abnormal expansion of a trinucleotide repeat sequence (CAG), which leads to the production of a toxic protein that damages brain cells.
The severity of the disease and the age of onset are related to the number of CAG repeats. Normally, the CAG sequence is repeated less than 27 times, but in Huntington’s disease, it is repeated many more times. The disease shows anticipation, meaning that it tends to worsen with each successive generation.
The symptoms of Huntington’s disease typically begin in the third of fourth decade of life, but in rare cases, they can appear in childhood of adolescence. The most common symptoms include involuntary movements (chorea), cognitive decline, and psychiatric disturbances.
The pathological hallmark of Huntington’s disease is the gross bilateral atrophy of the head of the caudate and putamen, which are regions of the brain involved in movement control. The EEG of patients with Huntington’s disease shows a flattened trace, indicating a loss of brain activity.
Macroscopic pathological findings include frontal atrophy, marked atrophy of the caudate and putamen, and enlarged ventricles. Microscopic findings include neuronal loss and gliosis in the cortex, neuronal loss in the striatum, and the presence of inclusion bodies in the neurons of the cortex and striatum.
In conclusion, Huntington’s disease is a devastating genetic disorder that affects the brain and causes a range of motor, cognitive, and psychiatric symptoms. The disease is caused by a mutation in the Huntington gene, which leads to the production of a toxic protein that damages brain cells. The pathological changes in the brain include atrophy of the caudate and putamen, neuronal loss, and the presence of inclusion bodies.
-
This question is part of the following fields:
- Genetics
-
-
Question 21
Incorrect
-
What is the cause of the formation of the 'Barr body'?
Your Answer: Aneuploidy
Correct Answer: Lyonization
Explanation:Lyonization: The Process of X-Inactivation
The X chromosome is crucial for proper development and cell viability, containing over 1,000 essential genes. However, females carry two copies of the X chromosome, which can result in a potentially toxic double dose of X-linked genes. To address this imbalance, females undergo a process called Lyonization, of X-inactivation, where one of their two X chromosomes is transcriptionally silenced. The silenced X chromosome then condenses into a compact structure known as a Barr body, which remains in a silent state.
X-inactivation occurs randomly, with no preference for the paternal or maternal X chromosome. It takes place early in embryogenesis, soon after fertilization when the dividing conceptus is about 16-32 cells big. This process occurs in all somatic cells of women, but not in germ cells involved in forming gametes. X-inactivation affects most, but not all, genes on the X chromosome. If a cell has more than two X chromosomes, the extra Xs are also inactivated.
-
This question is part of the following fields:
- Genetics
-
-
Question 22
Incorrect
-
Which of the following conditions does not exhibit a vertical transmission pattern?
Your Answer: Huntington's
Correct Answer: Cystic fibrosis
Explanation:Autosomal dominant conditions exhibit vertical transmission, except for cystic fibrosis, which is a widely recognized autosomal recessive condition.
Modes of Inheritance
Genetic disorders can be passed down from one generation to the next in various ways. There are four main modes of inheritance: autosomal dominant, autosomal recessive, X-linked (sex-linked), and multifactorial.
Autosomal Dominant Inheritance
Autosomal dominant inheritance occurs when one faulty gene causes a problem despite the presence of a normal one. This type of inheritance shows vertical transmission, meaning it is based on the appearance of the family pedigree. If only one parent is affected, there is a 50% chance of each child expressing the condition. Autosomal dominant conditions often show pleiotropy, where a single gene influences several characteristics.
Autosomal Recessive Inheritance
In autosomal recessive conditions, a person requires two faulty copies of a gene to manifest a disease. A person with one healthy and one faulty gene will generally not manifest a disease and is labelled a carrier. Autosomal recessive conditions demonstrate horizontal transmission.
X-linked (Sex-linked) Inheritance
In X-linked conditions, the problem gene lies on the X chromosome. This means that all males are affected. Like autosomal conditions, they can be dominant of recessive. Affected males are unable to pass the condition on to their sons. In X-linked recessive conditions, the inheritance pattern is characterised by transmission from affected males to male grandchildren via affected carrier daughters.
Multifactorial Inheritance
Multifactorial conditions result from the interaction between genes from both parents and the environment.
-
This question is part of the following fields:
- Genetics
-
-
Question 23
Incorrect
-
What is the truth about the genetics of dementia?
Your Answer: MAPT is the most common mutation seen in familial Frontotemporal dementia
Correct Answer: CADASIL follows an autosomal dominant inheritance pattern
Explanation:Genes Associated with Dementia
Dementia is a complex disorder that can be caused by various genetic and environmental factors. Several genes have been implicated in different forms of dementia. For instance, familial Alzheimer’s disease, which represents less than 1-6% of all Alzheimer’s cases, is associated with mutations in PSEN1, PSEN2, APP, and ApoE genes. These mutations are inherited in an autosomal dominant pattern. On the other hand, late-onset Alzheimer’s disease is a genetic risk factor associated with the ApoE gene, particularly the APOE4 allele. However, inheriting this allele does not necessarily mean that a person will develop Alzheimer’s.
Other forms of dementia, such as familial frontotemporal dementia, Huntington’s disease, CADASIL, and dementia with Lewy bodies, are also associated with specific genes. For example, C9orf72 is the most common mutation associated with familial frontotemporal dementia, while Huntington’s disease is caused by mutations in the HTT gene. CADASIL is associated with mutations in the Notch3 gene, while dementia with Lewy bodies is associated with the APOE, GBA, and SNCA genes.
In summary, understanding the genetic basis of dementia is crucial for developing effective treatments and preventive measures. However, it is important to note that genetics is only one of the many factors that contribute to the development of dementia. Environmental factors, lifestyle choices, and other health conditions also play a significant role.
-
This question is part of the following fields:
- Genetics
-
-
Question 24
Correct
-
What is the term used to describe a segment of DNA that does not code for proteins and is not translated?
Your Answer: Intron
Explanation:Splicing of mRNA
After the transcription of DNA into mRNA, the mRNA undergoes a crucial process known as splicing. This process involves the removal of certain portions of the mRNA, called introns, leaving behind the remaining portions known as exons. The exons are then translated into proteins. The resulting spliced form of RNA is referred to as mature mRNA. This process of splicing is essential for the proper functioning of genes and the production of functional proteins.
-
This question is part of the following fields:
- Genetics
-
-
Question 25
Incorrect
-
How can heterogeneity be defined in the context of genetic diseases?
Your Answer: Heterogeneity
Correct Answer: Imprinting
Explanation:Genomic Imprinting and its Role in Psychiatric Disorders
Genomic imprinting is a phenomenon where a piece of DNA behaves differently depending on whether it is inherited from the mother of the father. This is because DNA sequences are marked of imprinted in the ovaries and testes, which affects their expression. In psychiatry, two classic examples of genomic imprinting disorders are Prader-Willi and Angelman syndrome.
Prader-Willi syndrome is caused by a deletion of chromosome 15q when inherited from the father. This disorder is characterized by hypotonia, short stature, polyphagia, obesity, small gonads, and mild mental retardation. On the other hand, Angelman syndrome, also known as Happy Puppet syndrome, is caused by a deletion of 15q when inherited from the mother. This disorder is characterized by an unusually happy demeanor, developmental delay, seizures, sleep disturbance, and jerky hand movements.
Overall, genomic imprinting plays a crucial role in the development of psychiatric disorders. Understanding the mechanisms behind genomic imprinting can help in the diagnosis and treatment of these disorders.
-
This question is part of the following fields:
- Genetics
-
-
Question 26
Correct
-
What is the term used to refer to individuals with a certain chromosomal abnormality as super-males?
Your Answer: 47 XYY
Explanation:XYY Syndrome
XYY Syndrome, also known as Jacobs’ Syndrome of super-males, is a genetic condition where males have an extra Y chromosome, resulting in a 47, XYY karyotype. In some cases, mosaicism may occur, resulting in a 47,XYY/46,XY karyotype. The error leading to the 47,XYY genotype occurs during spermatogenesis of post-zygotic mitosis. The prevalence of XYY Syndrome is as high as 1:1000 male live births, but many cases go unidentified as they are not necessarily associated with physical of cognitive impairments. The most common features are high stature and a strong build, and fertility and sexual development are usually unaffected. In the past, XYY Syndrome was linked to aggressiveness and deviance, but this is likely due to intermediate factors such as reduced IQ and social deprivation. XYY Syndrome is best thought of as a risk factor rather than a cause. There is an increased risk of developmental disorders such as learning difficulties, ASD, ADHD, and emotional problems.
-
This question is part of the following fields:
- Genetics
-
-
Question 27
Incorrect
-
Which gene, present in an extra copy in individuals with Down's syndrome, is associated with an elevated risk of developing Alzheimer's disease?
Your Answer: Apolipoprotein E2
Correct Answer: Amyloid precursor protein
Explanation:The increased likelihood of Alzheimer’s disease in individuals with Down’s syndrome is believed to be linked to their inheritance of an additional copy of the amyloid precursor protein (APP) found on chromosome 21.
Genetics plays a role in the development of Alzheimer’s disease, with different genes being associated with early onset and late onset cases. Early onset Alzheimer’s, which is rare, is linked to three genes: amyloid precursor protein (APP), presenilin one (PSEN-1), and presenilin two (PSEN-2). The APP gene, located on chromosome 21, produces a protein that is a precursor to amyloid. The presenilins are enzymes that cleave APP to produce amyloid beta fragments, and alterations in the ratios of these fragments can lead to plaque formation. Late onset Alzheimer’s is associated with the apolipoprotein E (APOE) gene on chromosome 19, with the E4 variant increasing the risk of developing the disease. People with Down’s syndrome are also at high risk of developing Alzheimer’s due to inheriting an extra copy of the APP gene.
-
This question is part of the following fields:
- Genetics
-
-
Question 28
Incorrect
-
What is the most accurate estimation of the heritability of schizophrenia?
Your Answer: 10%
Correct Answer: 55%
Explanation:Heritability: Understanding the Concept
Heritability is a concept that is often misunderstood. It is not a measure of the extent to which genes cause a condition in an individual. Rather, it is the proportion of phenotypic variance attributable to genetic variance. In other words, it tells us how much of the variation in a condition seen in a population is due to genetic factors. Heritability is calculated using statistical techniques and can range from 0.0 to 1.0. For human behavior, most estimates of heritability fall in the moderate range of .30 to .60.
The quantity (1.0 – heritability) gives the environment ability of the trait. This is the proportion of phenotypic variance attributable to environmental variance. The following table provides estimates of heritability for major conditions:
Condition Heritability estimate (approx)
ADHD 85%
Autism 70%
Schizophrenia 55%
Bipolar 55%
Anorexia 35%
Alcohol dependence 35%
Major depression 30%
OCD 25%It is important to note that heritability tells us nothing about individuals. It is a population-level measure that helps us understand the relative contributions of genetic and environmental factors to a particular condition.
-
This question is part of the following fields:
- Genetics
-
-
Question 29
Incorrect
-
How can the mode of inheritance that exhibits knights move inheritance be described?
Your Answer: Autosomal dominant
Correct Answer: X-linked recessive
Explanation:Inheritance of knight’s move pattern is observed in disorders that are caused by recessive X-linked genes, rather than dominant X-linked genes.
Modes of Inheritance
Genetic disorders can be passed down from one generation to the next in various ways. There are four main modes of inheritance: autosomal dominant, autosomal recessive, X-linked (sex-linked), and multifactorial.
Autosomal Dominant Inheritance
Autosomal dominant inheritance occurs when one faulty gene causes a problem despite the presence of a normal one. This type of inheritance shows vertical transmission, meaning it is based on the appearance of the family pedigree. If only one parent is affected, there is a 50% chance of each child expressing the condition. Autosomal dominant conditions often show pleiotropy, where a single gene influences several characteristics.
Autosomal Recessive Inheritance
In autosomal recessive conditions, a person requires two faulty copies of a gene to manifest a disease. A person with one healthy and one faulty gene will generally not manifest a disease and is labelled a carrier. Autosomal recessive conditions demonstrate horizontal transmission.
X-linked (Sex-linked) Inheritance
In X-linked conditions, the problem gene lies on the X chromosome. This means that all males are affected. Like autosomal conditions, they can be dominant of recessive. Affected males are unable to pass the condition on to their sons. In X-linked recessive conditions, the inheritance pattern is characterised by transmission from affected males to male grandchildren via affected carrier daughters.
Multifactorial Inheritance
Multifactorial conditions result from the interaction between genes from both parents and the environment.
-
This question is part of the following fields:
- Genetics
-
-
Question 30
Incorrect
-
Which of the following statements is not a requirement for the Hardy-Weinberg equilibrium?
Your Answer: Mating between individuals is random
Correct Answer: Natural selection occurs
Explanation:Hardy-Weinberg Principle and Allele Frequency
Allele frequency refers to the proportion of a population that carries a specific variant at a particular gene locus. It can be calculated by dividing the number of individual alleles of a certain type by the total number of alleles in a population. The Hardy-Weinberg Principle states that both allele and genotype frequencies in a population remain constant from generation to generation unless specific disturbing influences are introduced. To remain in equilibrium, five conditions must be met, including no mutations, no gene flow, random mating, a sufficiently large population, and no natural selection. The Hardy-Weinberg Equation is used to predict the frequency of alleles in a population, and it can be used to estimate the carrier frequency of genetic diseases. For example, if the incidence of PKU is one in 10,000 babies, then the carrier frequency in the general population is 1/50. Couples with a previous child with PKU have a 25% chance of having another affected child.
-
This question is part of the following fields:
- Genetics
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)